
Applied Soft Computing 11 (2011) 514–522

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsev ier .com/ locate /asoc

A new chaos-based fast image encryption algorithm

Yong Wanga,b,∗, Kwok-Wo Wongb, Xiaofeng Liaoc, Guanrong Chenb

a Key Laboratory of Electronic Commerce and Logistics of Chongqing, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
b Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
c Department of Computer Science and Engineering, Chongqing University, Chongqing 400044, China

a r t i c l e i n f o

Article history:
Received 18 October 2008
Received in revised form
19 November 2009
Accepted 6 December 2009
Available online 16 December 2009

Keywords:
Spatiotemporal chaos
Image encryption
Cryptography
Information security

a b s t r a c t

In recent years, various image encryption algorithms based on the permutation–diffusion architecture
have been proposed where, however, permutation and diffusion are considered as two separate stages,
both requiring image-scanning to obtain pixel values. If these two stages are combined, the duplicated
scanning effort can be reduced and the encryption can be accelerated. In this paper, a fast image encryp-
tion algorithm with combined permutation and diffusion is proposed. First, the image is partitioned into
blocks of pixels. Then, spatiotemporal chaos is employed to shuffle the blocks and, at the same time, to
change the pixel values. Meanwhile, an efficient method for generating pseudorandom numbers from
spatiotemporal chaos is suggested, which further increases the encryption speed. Theoretical analyses
and computer simulations both confirm that the new algorithm has high security and is very fast for
practical image encryption.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid growth of image transmission through computer
networks especially the Internet, the security of digital images
has become a major concern. Image encryption, in particular,
is urgently needed but it is a challenging task—it is quite dif-
ferent from text encryption due to some intrinsic properties of
images such as bulky data capacity and high redundancy, which are
generally difficult to handle by using traditional techniques. Never-
theless, many new image encryption schemes have been suggested
in recent years, among which the chaos-based approach appears to
be a promising direction [1–10].

A general permutation–diffusion architecture for chaos-based
image encryption was employed in Refs. [1,11–15] as illustrated in
Fig. 1. In the permutation stage, the image pixels are relocated but
their values remain unchanged. In the diffusion stage, the pixel val-
ues are modified so that a tiny change in one-pixel spreads out to as
many pixels as possible. Permutation and diffusion are two sepa-
rate and iterative stages, and they both require scanning the image
in order to obtain the pixel values. Thus, in the encryption process,
each round of the permutation–diffusion operation requires at least
twice scanning the same image. This effort is actually duplicated but
may be avoided if the permutation and diffusion operations can be

∗ Corresponding author at: Key Laboratory of Electronic Commerce and Logistics
of Chongqing, Chongqing University of Posts and Telecommunications, Chongqing
400065, China. Fax: +86 23 62461172.

E-mail address: wangyong cqupt@163.com (Y. Wang).

combined, i.e., via changing the values of the pixels while relocat-
ing them, as illustrated in Fig. 2. As a result, the image only needs
to be scanned once so that the encryption speed and efficiency is
significantly improved.

On the other hand, spatiotemporal chaos has attracted more
and more interests among researchers in the fields of mathematics,
physics and engineering. Compared with simple chaotic maps, this
kind of spatiotemporal chaos possesses two additional merits for
cryptographic purposes. First, observe that due to the finite com-
puting precision, orbits of temporal discrete chaotic systems will
eventually become periodic. However, the period of spatiotempo-
ral chaos is found much longer than that of temporal chaotic maps
[16] so that the periodicity problem is practically avoided [17]. Sec-
ond, a spatiotemporal chaotic system is high-dimensional, having
a number of positive Lyapunov exponents that guarantee the com-
plex dynamical behavior or high randomness. It is therefore more
difficult to predict the time series generated by this kind of chaotic
systems.

In this paper, an image encryption algorithm with the archi-
tecture of combining permutation and diffusion is proposed. The
plain-image is first partitioned into blocks of 8 × 8 pixels. A spa-
tiotemporal chaotic system is then employed to generate the
pseudorandom sequence used for diffusing and shuffling the
blocks. The objectives of this new design include: (i) to efficiently
extract good pseudorandom sequences from a spatiotemporal
chaotic system and (ii) to simultaneously perform permutation and
diffusion operations for fast encryption.

The rest of this paper is organized as follows: Section 2 focuses
on the efficient generation of pseudorandom sequences from spa-

1568-4946/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.asoc.2009.12.011

dx.doi.org/10.1016/j.asoc.2009.12.011
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:wangyong_cqupt@163.com
dx.doi.org/10.1016/j.asoc.2009.12.011


Y. Wang et al. / Applied Soft Computing 11 (2011) 514–522 515

Fig. 1. Image cryptosystem based on the permutation and diffusion operations.

Fig. 2. Image cryptosystem combining the permutation–diffusion architecture.

tiotemporal chaos. In Section 3, the proposed algorithm is described
in detail. Section 4 presents simulation results and performance
analyses. In Section 5, conclusions are drawn.

2. Pseudorandom sequences generated from
spatiotemporal chaos

2.1. Approach to obtaining pseudorandom numbers

A general nearest-neighboring spatiotemporal chaos system,
also called nearest-neighboring coupled-map lattices (NCML) [18],
can be described by

xn+1(i) = (1 − ε)f (xn(i)) + εf (xn(i + 1)) (1)

where n = 1, 2, . . ., is the time index; i = 1, 2, . . ., N, is the lattice state
index; f is a chaotic map, and ε ∈ (0, 1) is a coupling constant. The
periodic boundary condition xn(N + i) = xn(i) is imposed into this sys-
tem. Moreover, the tent map is chosen as the local chaotic map,
given by

xi+1 =
{

xi/b, xi ≤ b

(1 − xi)/(1 − b), xi > b
(2)

where b ∈ (0, 1) is a constant. Here, N is chosen as 8, while the
parameters are selected as ε = 0.05 and b = 0.4999 in order to have
good chaotic properties [19,20].

The traditional approach to extracting pseudorandom numbers
from the output of a chaotic system involves iterating the chaotic
map and then extracting a value from its current state variable.
These two operations are performed repeatedly until sufficient
pseudorandom numbers are obtained. For the NCML, the local
chaotic map of each lattice is first iterated. Then, the new state val-
ues are calculated according to the coupling relationship between
the lattices. Obviously, iterating the NCML requires much more

Table 1
Time required for 10,000,000 runs of various basic operations performed
on PC1 and PC2.

Operators Time required (ms)

PC1 PC2

And (∧) 15 12
Complement (¬) 15 12
Exclusive OR (⊕) 16 12
Inclusive OR (∨) 16 12
Modulus (mod) 16 12
Addition (+) 18 16
Multiplication (×) 63 47
Converting floating-point to integer 210 160

computational effort than iterating a simple chaotic map. The effi-
ciency will be very low if only one value is extracted from the NCML
at each time. Therefore, to improve the efficiency, more numbers
should be extracted in each iteration.

The state value of a chaotic map is a floating-point number,
but a pseudorandom number in the form of an integer is usually
required. This means that the conversion from floating-points to
integers cannot be avoided in practical applications. However, it is
found from computer simulations that such a conversion is time-
consuming. To justify this, various basic operations are repeated
for 10,000,000 times on two personal computers with different
configurations, where one is named as PC1 with a 1.3 GHz Pen-
tium processor and 256 M RAM while the other is called PC2 with a
2.67 GHz Pentium D processor and 1G RAM. The timing data listed
in Table 1 indicate that multiplication and conversion from floating-
points to integers should be avoided in order to have high efficiency
of generating pseudorandom numbers.

Based on the above analysis, the following steps for generating
64 pseudorandom numbers from the lattice values are suggested.

Step 1. Iterate the NCML once and extract 16 bits (9th to 24th bits
after the decimal point) from each lattice value. Thus, a total of
128 bits are obtained. Divide these bits into 16 bytes and denote
them as A0, A1, . . ., A15.
Step 2. Generate 16 numbers, S0, S1, . . ., S15 from A0, A1, . . ., A15
according to the following formula:

S0 = F(A0, A1, A2, A3); S1 = G(A1, A2, A3, A0); S2 = H(A2, A3, A0, A1); S3 = I(A3, A0, A1, A2)
...

...
...

...
S12 = F(A12, A13, A14, A15); S13 = G(A13, A14, A15, A12); S14 = H(A14, A15, A12, A13); S15 = I(A15, A12, A13, A14)

(3)

where functions F, G, H, I are defined as

F(a, b, c, d) = {[(a ∧ b) ∨ ((¬a) ∧ c)] + d}mod256 (4)

G(a, b, c, d) = {[(a ∧ c) ∨ (b ∧ (¬c))] + d}mod256 (5)

H(a, b, c, d) = [(a ⊕ b ⊕ c) + d]mod256 (6)

I(a, b, c, d) = {[b ⊕ (a ∨ (¬c))] + d}mod256 (7)

Step 3. Change the values of A0, A1, . . ., A15 as

A0 → A1, A1 → A2, . . . , A14 → A15, A15 → A0 (8)

If 64 pseudorandom numbers have already been generated, go
to Step 4; otherwise, go to Step 2 to generate the next 16 pseudo-
random numbers.
Step 4. Substitute the 64 numbers according to the S-box of AES
[21], which are expressed in hexadecimal form in Fig. 3.
Step 5. Generate the 64 output numbers according to

Ri = {[Sb(i) ⊕ Sb((i + 1)mod64)] + [Sb((i + 2)mod64)

⊕Sb((i + 3)mod64)]}mod256 (9)



Download	English	Version:

https://daneshyari.com/en/article/496923

Download	Persian	Version:

https://daneshyari.com/article/496923

Daneshyari.com

https://daneshyari.com/en/article/496923
https://daneshyari.com/article/496923
https://daneshyari.com/

