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A B S T R A C T

Kernel dependence maximization for multi-label dimensionality reduction (kMDDM) has been proposed recently
to cope with high-dimensional multi-label data. In order to produce discriminant projection vectors, kMDDM
utilize the Hilbert-Schmidt independence criterion to capture the dependence between the feature description
and the associated labels. However, the computation of kMDDM involves dense matrices eigen-decomposition
that is known to be computationally expensive for large scale problems. In this paper, we reformulate the
original kMDDM as a least-squares problem, so as to significantly lessen computational burden by utilizing the
conjugate gradient algorithms. Further, appealing regularization techniques can be incorporated into the least-
squares model to boost the generalization performance. Extensive experiments conducted on benchmark data
collections verify the effectiveness of our proposed model.

1. Introduction

Multi-label classification has recently received considerable atten-
tion in various applications such as automatic image annotation [1–3],
multi-topic document categorization [4,5] and protein function pre-
diction [6,7]. Different from traditional single-label classification where
each instance belongs to only one class, multi-label classification
tackles problems where each instance may associate with more than
one classes. A large body of algorithms have been developed in the
literature. According to [8], existing approaches can be roughly split
into two categories: algorithm adaption and problem transformation.
Algorithm adaption approaches attempt to extend existing single-label
classification algorithms to handle multi-label problems. Typical ex-
amples include neural network [9,10], lazy learning [11–13], Adaboost
MR [14,15], rank SVM [16]. For the transformation approaches, one
usually transforms the multi-label classification problem into several
single-label classification problems so that existing single-label ap-
proaches can be easily employed. Some prominent examples include
binary relevance method [8], pair-wise method [17,18] and label em-
bedding method [19–21]. Madjarov et al. [22] extends this categor-
ization of multi-label methods with a third group of methods, namely,
ensemble methods. Algorithms belonging to this group include RAkEL
[23], ensembles of classifier chains [24]. Recently, multi-view feature
learning algorithms are introduced to deal with multi-label problem

[25,26]. In addition, sparse and low rank representation has also been
introduced to develop robust multi-label learning algorithms [27–30].
In particular, Yu et al. [29] employ the low rank constraints to deal with
multi-label learning problem with missing labels. The work in [30]
combines the merits of privileged information and low-rank constraints
to explore and exploit the relationship between labels in multi-label
learning problems. When labels are arrived on the fly, You et al. [31]
have proposed streaming label learning (SLL) framework which is
capable of modelling newly-arrived labels with the help of the knowl-
edge learned from past labels.

However, multi-label classification frequently involves high-di-
mensional data which makes existing approaches impractical due to the
curse of dimensionality. As a result, a large number of multi-label di-
mension reduction approaches have been developed in the literature.
Multi-label informed latent semantic indexing (MLSI) was proposed in
[32] for multi-label dimension reduction. MLSI employs the label in-
formation to guide the learning of the transformation and has been
applied successfully in multi-label text classification. Classical linear
discriminant analysis has been extended by Park and Lee [33] to handle
multi-label data samples. However, it does not take label correlation
into account. Wang et al. [34] proposed a novel multi-label linear
discriminant analysis (MLDA) to take advantage of label correlation and
explore the powerful discrimination ability to copy with multi-label DR.
Zhang and Zhou [35] developed a multi-label dimensionality reduction
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via dependence maximization (MDDM). MDDM uses Hilbert-Schmidt
independence criterion (HSIC) to capture the strong dependence be-
tween the feature description and the associated labels. MDDM involves
generalized eigenvalue decomposition which requires expensive com-
putation cost especially for high-dimensional data. Canonical correla-
tion analysis (CCA) [36] and partial least squares (PLS) [37] have been
utilized for multi-label feature extraction. CCA aims to find a pair of
vectors, one for each variable, such that the data are maximally cor-
related in the transformed space. Unlike CCA, PLS maximizes the cov-
ariance of the two sets of variables in the transformed space. Further, an
equivalent relationship between CCA and PLS has been established in
[38]. In addition to the above linear multi-label dimensionality re-
duction approaches, nonlinear algorithm have also been studied in the
literature. Kernel CCA has been presented in [36]. A kernel extension of
MDDM (kMDDM) has been developed in [35]. However, both linear
and nonlinear approaches involve eigenvalue decomposition on dense
matrix which is expensive for large scale dataset.

The above multi-label feature extraction approaches usually need to
solve an eigenvalue problem which is usually computational expensive
and can not scale to large problems. Recently, some works have devoted
to solve the scalability issue in multi-label feature extraction. The au-
thors in [39] develop a least squares formulation for a class of gen-
eralized eigenvalue problems and employ conjugate gradient algorithm
to speed up the training process. Specifically, in [36], CCA and kernel
CCA have been reformulated as a least squares problem. Shu et al. [40]
reformulate MLDA as a least squares problem whose solution can be
efficiently solved via conjugate gradient algorithm which has linear
time complexity in terms of dimensionality. The authors in [41] further
show that MDDM can be formulated as a least squares problems.
However, the least squares formulation of kMDDM is still an open
problem.

In this paper, we develop an efficient algorithm for solving kMDDM.
Our work builds on the recent work of kernel MDDM [35]. We first give
a computational analysis for kMDDM and show that the original
kMDDM has O n( )3 complexity. We then propose an equivalent least
squares formulation for kMDDM to reduce the computational cost. In
summary, the key contributions of this article are highlighted as fol-
lows.

• We propose an efficient SVD based approach for computing the
optimal solution of kMDDM [35]. Compared with original for-
mulation, whose time complexity requires +n n5

6
3 9

2
3 flam, the new

algorithm requires only n9
2

3 flam which is smaller than the original
formulation.

• We further show that kMDDM can be reformulated as a least squares
problems. Based on this equivalent relationship, the solution of
kMDDM can be efficiently derived via conjugate gradient algo-
rithms. Further, appealing regularization techniques can be in-
corporated into the least squares framework to boost the general-
ization performance.

• We have conducted extensive experiments on several benchmark
datasets to demonstrate the effectiveness of the proposed formula-
tion.

The rest of the article is organized as follows. Section 2 reviews
kMDDM. Section 3 presents a computational analysis for kMDDM. The
equivalent least squares formulation of kMDDM and its extension are
presented in Section 4. We report experimental results in Section 5.
Followed with conclusion in Section 6.

2. HSIC and kMDDM

In this section, we give a brief review of kMDDM [35]. Before
presenting kMDDM, we first introduce the Hilbert-Schmidt in-
dependence criterion (HSIC) [42] since kMDDM is based on HSIC.

2.1. Hilbert-Schmidt independence criterion

Given two random variables X∈x and Y∈y with joint prob-
ability pxy. HSIC measures the dependence between x and y by the
computing the norm of the cross-variance operator over the domain X

and Y in the Hilbert space. Specifically, let us denote by F the re-
producing kernel Hilbert space (RKHS) on X with feature map

X F→ϕ: and kernel X X× →K R:x . Let G be another RKHS with
feature map ψ and kernel Ky. The cross-covariance is defined as

= − ⊗ −C E ϕ x μ ψ y μ[( ( ) ) ( ( ) )]xy xy x y

where = =μ E ϕ x μ E ψ y( ( )), ( ( ))x y and ⊗ denotes the tensor product.
Given that F and G are separable RKHSs, the square of the Hilbert-
Schmidt norm of the cross-covariance is called HSIC. With kernel re-
presentation, HSIC can be expressed as

= ′ ′ + ′ ′

− ′ ′

′ ′ ′ ′

′ ′

HSIC E K x x K y y E K x x E K y y
E E K x x E K y y

[ ( , ) ( , )] [ ( , )] [ ( , )]
2 [ [ ( , )] [ ( , )]]

xx yy x y xx x yy y

xy x x y y

where x y( , ) and ′ ′x y( , ) are two independent pairs drawn independently
from ′ ′p E,xy xx yy is the expectation over these pairs. Given a finite set of
data pairs = =Z x y{( , )}i i i

n
1 independently drawn from Pxy, the empirical

estimate for HSIC is given by [42]

F G = − −HSIC Z n tr K HK H( , , ) ( 1) ( )x y
2

where = −H I een
T1 is the centering matrix, I is the ×n n identity matrix,

e is a ×n 1 vector with all elements are ones and n is the number of
samples.

Table 1
Summary of relevant matrices and their associated computational complexity.

Matrix Size Computation Complexity

K ×n n SVD n9
2

3

B ×c t SVD c9
2

3

Table 2
Summary of statistics of the data sets. d is the dimensionality, n is the number of data
samples, c is the number of labels.

Dataset d n c

scene 294 2407 6
yeast 103 2414 14
Arts 17973 7441 19
Business 16621 9968 17
Computers 25259 12371 23
Education 20782 11817 14
Health 18430 9109 14
Reference 26397 7929 15
Recreation 25095 12797 18
Science 24002 6345 22
Social 32492 11914 21
Society 29189 14507 21
RV1 47236 6000 101
Pascal07 512 9963 21

Table 3
Performance of kMDDM and LSkMDDM in terms of AUC, macro F1 and micro F1 on scene
and yeast datasets.

Dataset Method AUC macro F1 micro F1

Scene kMDDM 0.6038 0.2243 0.2491
LSkMDDM 0.6039 0.2247 0.2510

Yeast kMDDM 0.5980 0.4212 0.6063
LSkMDDM 0.6005 0.4229 0.6062

X. Shu, J. Qiu Journal of Visual Communication and Image Representation 49 (2017) 361–370

362



Download English Version:

https://daneshyari.com/en/article/4969246

Download Persian Version:

https://daneshyari.com/article/4969246

Daneshyari.com

https://daneshyari.com/en/article/4969246
https://daneshyari.com/article/4969246
https://daneshyari.com

