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a b s t r a c t

We consider nonlinear optimization problems constrained by a system of fuzzy relation equations. The
solution set of the fuzzy relation equations being nonconvex, in general, conventional nonlinear program-
ming methods are not practical. Here, we propose a genetic algorithm with max-product composition
to obtain a near optimal solution for convex or nonconvex solution set. Test problems are constructed
to evaluate the performance of the proposed algorithm showing alternative solutions obtained by our
proposed model.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following fuzzy relation equations,

xoA = b, (1)

where A = (aij)m×n, 0≤ aij ≤1, is a fuzzy matrix, b = (b1,b2, . . ., bn),
0≤bj ≤1, is an n-dimensional vector and “o” stands for the max-
product composition [1], that is,

max
i=1,...,m

(xiaij) = bj, j = 1, 2, . . . , n. (2)

Given the fuzzy relation matrix A and output vector b, the res-
olution problem is to determine all input vectors x = (x1, . . ., xm),
0≤ xi ≤1, satisfying (1). A nonempty solution set of the fuzzy rela-
tion equations is generally a nonconvex set determined in terms of
the maximum solution and the finite number of minimal solutions
[1,2,4–6].

The theory of fuzzy relational equations (FRE) forms a gen-
eralization of Boolean relation equations [14]. In [15], Sanchez
investigated the notion of fuzzy relation equations based upon the
max–min composition. He considered some theoretical methods
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and conditions to resolve the fuzzy relations. He also presented
some results for the determination and existence of solutions of
certain basic fuzzy relation equations. The set of solutions of (1) is
not usually a singleton. However, he showed that, when the set of
solutions is nonempty, it is a nonconvex set, in general, and it can be
completely determined by a unique maximum solution and a finite
number of minimal solutions. In [16], Sanchez initiated a develop-
ment of the theory and applications of FRE treated as a formalized
model for imprecise notions.

Fang and Li [2] converted an optimization problem with a sin-
gle linear objective function subject to the fuzzy relation equations
based on the max–min composition to a 0–1 integer programming
problem and solved it by a branch and bound method. Wu et al. [17]
improved Fang and Li’s method by providing an upper bound for the
branch and bound procedure. Lee and Guu [34] proposed a fuzzy
relational optimization model for the streaming media provider
seeking a minimum cost while fulfilling the requirements assumed
by a three-tier framework.

The max–min composition is normally applied when a system
involves conservative solutions in the sense that the goodness of
one value cannot compensate the badness of another value [13].
Other compositions can also be used depending on the applications.
Yager [18] gives some guidelines for selecting a proper composi-
tion.

The fundamental result for the fuzzy relation equations with
max-product composition having the conservative property goes
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back to Pedrycz [19]. Another study in this regard can be found
in Brouke and Fisher [20]. They extended the study of an inverse
solution of a system of fuzzy relation equations with max-product
composition. They provided theoretical results for determining
the complete set of solutions as well as the conditions for the
existence of solutions. Their results showed that such complete
set of solutions can be characterized by one maximum solution
and a number of minimal solutions. Furthermore, the mono-
graph by Nola et al. [21] contains a thorough discussion of this
class of equations. Markovskii [22] showed that solving max-
product FRE is closely related to the covering problem, and
hence is NP-hard. Chen and Wang [23] designed an algorithm
for obtaining the logical representation of all minimal solutions.
They showed that a polynomial-time algorithm to find all min-
imal solutions of an FRE with max–min composition may not
exist.

Peeva and Kyosev [26] developed an exact method and a uni-
versal algorithm for solving max-product fuzzy linear system of
equations and max-product fuzzy relational equations. Markovskii
[27] described methods for reducing the dimension of the cover-
ing problem and methods for solving fuzzy relation equations with
max-product composition.

Linear optimization problems with max-product approach was
investigated by Loetamonphong et al. [24]. They defined two sub-
problems by separating the negative and nonnegative coefficients
in the objective function, and then obtained the optimal solution
by combining the two subproblems. The subproblem with a neg-
ative coefficient is easily optimized by the maximum solution of
the set of solutions. The other subproblem was converted to a 0–1
integer programming problem and solved by the branch and bound
method. Guu and Wu [25] gave a necessary condition for an opti-
mal solution in terms of the maximum solution derived from the
fuzzy relation equations. Guu and Wu [28] studied the optimiza-
tion problem subject to fuzzy relation equations with max-product
composition.

Yang and Cao [29] studied the fuzzy relation geometric pro-
gramming problems with monomial objective function and fuzzy
relation equations as constraints using max–min composition. Guo
and Xia [30] presented a new approach for solving optimization
problems with one linear objective function and finitely many fuzzy
relation inequality constraints.

Tao et al. [31] developed methods for solving the global opti-
mization problem of max–min systems and established the criteria
for the existence and uniqueness of global optimal solutions.

Lu and Fang [11] proposed a genetic algorithm to solve
a nonlinear single objective problem with fuzzy relation
equations as constraints considering the max–min composi-
tion.

Here, we consider minimizing a nonlinear objective function
constrained by max-product fuzzy relation equations. The set of
feasible solutions being nonconvex and the problem having a spe-
cial structure, we propose to apply a genetic algorithm for finding
a solution. The nonlinear programming model with fuzzy relation
constraints is formally defined to be:

minf (x), s.t. xoA = b. (3)

In Section 2, we describe our genetic algorithm, in detail. We
devote Section 3 to the effective construction of test problems
and numerical experimentation. Finally, we conclude in Section
4.

2. The proposed genetic algorithm

Genetic algorithms (GAs) are built upon the mechanism of nat-
ural evolution of genetics. GAs emulate the biological evolutionary

theory to solve optimization problems. In general, GAs start with a
randomly generated population and progress to improve solutions
by using genetic operators such as crossover and mutation. In each
iteration (a generation), based on the performance (fitness) and
some selection criteria, the relatively good solutions are retained
and the relatively bad solutions are replaced by some newly gener-
ated offsprings. An evaluation criterion (objective) usually guides
the selection.

Our proposed GA is designed specifically for solving nonlinear
optimization problems with fuzzy relation constraints as specified
by (3).

2.1. Representation

In our algurithm, since the solutions of fuzzy relation equations
are comprised of nonnegative real numbers not bigger than one
then we use the floating point [12] representation in which each
gene or variable xi in an individual x = (x1, x2, . . ., xm) is a real number
in the interval [0, 1].

2.2. Initialization

In general, a GA initializes the population randomly. This works
well when dealing with unconstrained optimization problems.
However, for a constrained optimization problem, randomly gen-
erated solutions may not be feasible. Since GA intends to keep
the solutions (chromosomes) feasible, we present an initialization
module to initialize a population by randomly generating the indi-
viduals inside the feasible domain.

Since some elements will never play a role in determining a solu-
tion of the fuzzy relation equations, then we can modify the fuzzy
relation matrix by identifying these elements and setting their
values to 0 hoping to accelerate the procedure for finding a new
solution. To make it clear, we define the “equivalence operation”.

Definition 1. If nullifying (setting to zero) some elements of a
given fuzzy relation matrix A has no effect on the solutions of fuzzy
relation Eq. (1), then nullifying is called an “equivalence operation”.

The following lemma given in [11] can be useful.

Lemma 1. For j1, j2 ∈ {1, 2, . . ., n}, if bj1 /aij1 > bj2 /aij2 , aij1 ≥ bj1 ,
and aij2 ≥ bj2 , for some i, then an equivalence operation can be
performed by “setting aij1 to zero”.

We now give an example to illustrate an equivalence operation.

Example 0. Consider the matrix A and the vector b below:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.3765 0.6539 0.6423 0.5858

0.8595 0.6044 0.5603 0.5429

0.7939 0.2591 0.3769 0.4836

0.6095 0.0260 0.1207 0.8866

0.3318 0.9870 0.4491 0.0816

0.6240 0.2077 0.1377 0.3626

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

b =
(

0.6254 0.6198 0.6010 0.8521
)

.

Since b2/a12 > b3/a13, a12 > b2, and a13 > b3, then the operation
“setting a12 to 0” is an equivalence operation.

Based on this idea, the initialization module originates a popu-
lation consisting of a given number of randomly generated feasible
solutions. An algorithm for initializing a population is described as
having the following steps.
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