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a b s t r a c t

High-speed imaging requires high-bandwidth, fast image sensors that are generally only available in
high-end specialized cameras. Nevertheless, with the use of compressive sensing theory and computa-
tional photography techniques, new methods emerged that use spatial light modulators to reconstruct
high-speed videos with low speed sensors. Although these methods represent a big step in the field, they
still present some limitations, such as low light efficiency and the generation of measurements with time
dependency. To tackle these problems, we propose a per-pixel mirror-based acquisition method that is
based on a new kind of light modulator. The proposed method uses moving mirrors to scramble the light
coming from different positions, thus ensuring better light efficiency and generating time independent
measurements. Our results show that the proposed method and its variations perform better than meth-
ods available in the literature, generating videos that are less noisy and that display better content
separation.

� 2017 Elsevier Inc. All rights reserved.

1. Introduction

Several applications in science and industry require the acquisi-
tion of videos with time resolutions that are from tens to a few
hundred times higher than those of typical consumer cameras.
Examples include the study of blood flow in cellular structures,
imaging of combustion processes, evaluation of precise move-
ments in biomechanical structures, analysis of the mechanics of
novel fluids, detection of movements causing structural fatigue,
visual microphones, etc. [1–3]. In these applications, the most
common solution for acquiring high-speed videos involves using
special high-speed video cameras, which have highly sensitive
sensors capable of acquiring thousands of frames per second
(FPS). Unfortunately, the cost of such sensors still prevents their
use in most applications. An alternative approach uses a synchro-
nized array of cameras [4,5], which is also an expensive solution
because it requires, typically, 64 to 128 cameras.

A more recent solution consists of using compressive sensing to
reconstruct high-speed videos from measurements obtained using
sub-60 FPS cameras [6–12]. Most of these solutions use shutters to
scramble the light rays that reach the sensors. One of the devices
that uses this approach is the flutter shutter, which divides the cam-

era frame time into short-term periods, during which sensors can
either receive light or not. Some commercial cameras have imple-
mentations of the flutter shutter device [12] that can be used as a
compressive sensing acquisition method for reconstructing high-
speed periodic scenes [10] and videos with no motion restrictions
[11].

Another device that implements this approach is the per-pixel
shutter, which selects short periods for light exposure using an
independent control for each camera sensor. Some compressive
sensing high-speed video reconstruction methods [13,14,6] are
based on per-pixel shutter devices. Although methods that use
per-pixel shutters provide better results than methods that use
flutter shutters, per-pixel shutters are not currently implemented
in commercial cameras. Experimental implementations of
per-pixel shutters are performed by attaching an additional optical
system to the camera.

Both flutter shutter and per-pixel shutter methods have com-
mon drawbacks. First, these methods discard around 50% of the
light, reducing light efficiency and consequently image quality
after reconstruction. Also, for both methods, the light captured at
different time instants is integrated into a single pixel, what means
that measurements are time dependent. Therefore, at the recon-
struction stage it is difficult to separate the information coming
from different time instants. If the goal of an application is to
reconstruct high-speed videos, these drawbacks have to be
addressed.

http://dx.doi.org/10.1016/j.jvcir.2017.05.004
1047-3203/� 2017 Elsevier Inc. All rights reserved.

q This paper has been recommended for acceptance by M.T. Sun.
⇑ Corresponding author.

E-mail address: jonathanalis@gmail.com (J.A.S. Lima).

J. Vis. Commun. Image R. 47 (2017) 23–35

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate/ jvc i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2017.05.004&domain=pdf
http://dx.doi.org/10.1016/j.jvcir.2017.05.004
mailto:jonathanalis@gmail.com
http://dx.doi.org/10.1016/j.jvcir.2017.05.004
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci


Considering the high cost of high-speed cameras and the limita-
tions and drawbacks of acquisition methods that use low-cost
cameras, in this paper we propose a new acquisition method for
compressive sensing reconstruction of high-speed videos. The pro-
posed method, called per-pixel mirror-based (PPM) acquisition
method, was described in its initial form in an earlier publication
[15], which contains preliminary results. PPM is based on an acqui-
sition strategy that uses a set of moving mirrors to redirect the
light to certain pixels. The method does not discard any light and
it separates the temporal information, generating time-
independent measurements. In this paper, we detail several varia-
tions of the proposed method and compare them with currently
available acquisition methods. We tested the proposed method
for still images, synthetic videos and natural videos.

The remaining parts of the paper are organized as follows. Sec-
tions 2 and 3 briefly describe the compressive sensing theory and
the currently available video compressive sensing acquisition
methods. Section 4 describes the proposed method, whereas Sec-
tion 5 presents the simulation results. Finally, Section 6 presents
our conclusions and future works.

2. Compressive sensing

Let N be the dimension of the signal x to be acquired. This signal
x is said to be sparse in the W domain if only a few projections of x
into the bases of W are non-zero. If the total number of non-zero
projections is K < N, then the signal is said to be K-sparse. The the-
ory of compressive sensing [16–20] allows one to acquire and to
reconstruct a sparse signal with a smaller number of measure-
ments than the number of samples required by the Nyquist rate.
More specifically, compressive sensing allows one to take only M
linear measurements from x, where M � N, and nonetheless all
N components of x theoretically without any error.

Suppose that x is K-sparse in the basis W, with K � N. Let y be
the vector of linear projections of x into M vectors Ui

(i ¼ ½1; � � � ;M�). If U is the M � N matrix in which each row is one
of those distinct M vectors, then

y ¼ Ux ¼ UWs ¼ Hs; ð1Þ

where H ¼ UW is an M � N matrix and s ¼ W�1x is the sparse
representation of x in the domain defined by W.

Note that (1) represents the relationship between the available
measurements, y, and the desired signal, x, which is at first
unknown. The acquisition process must provide the components
of y, whereas a reconstruction procedure must provide x based
on y and on some signal properties. In Section 4, we detail how
we obtain y in our formulation, and we provide the mathematical
modeling that relates y to x in our proposed methods. In other
words, we describe our particular measurement matrix U. For
now, we explain the principles based on which we compute x
from y.

Regarding the reconstruction stage, since (1) is an underdeter-
mined system, there are generally infinite signals s0 that satisfy
Hs0 ¼ y. Amongst all solutions, we search for the sparsest one.
Two properties must be satisfied so that this procedure is stable:
the restricted isometry property (RIP) [21] and the incoherence
property [22]. According to the RIP, H should roughly preserve
the lengths of the K-sparse vectors, within a predefined tolerance
[22]. Incoherence, on the other hand, requires that the rows of U
do not have a sparse representation in the W domain [20].

Once the RIP and the incoherence are satisfied, reconstructing a
K-sparse signal using these M measurements corresponds to find-
ing the sparsest signal that satisfies these measurements [20].
Directly searching for the sparsest solution, however, is generally
unfeasible, as it corresponds to a combinatorial optimization

problem [21]. Practical solutions use optimization algorithms
based on ‘1- or ‘p-minimization problems. Such alternatives reduce
the computational complexity, at the cost of increasing the number
of linear measurements [16].

In image reconstruction, the ideal problem of finding the spars-
est solution by ‘0-minimization can be replaced by the Total Vari-
ation (TV) minimization [23,24], which is the chosen method in
this paper. The TV of an N1 � N2 image s0, denoted as ks0kTV , is
related to the horizontal (Gvs0) and vertical (Ghs0) gradients of s0.
If we use ‘1 (approach that was already applied in compressive
video sensing [25]) to combine Ghs0 and Gvs0, TV can be defined as:

jjs0jjTV ¼
XN1

i¼2

XN2

j¼2

jGvs0ði; jÞj þ jGhs0ði; jÞj: ð2Þ

The use of TV minimization for image reconstruction is based
on the idea that the discrete gradient of natural images tends to
generate sparser images. TV can be then viewed as the ‘1 of the
image in a sparse domain [26]. For image reconstruction, the opti-
mization problem can be described as

ŝ ¼ argmins0 ðjjs0jjTV Þ; such that y ¼ Hs0 ¼ UWs0: ð3Þ
In this equation, U is the acquisition matrix and W is the transform
basis.

Note that, in our proposed methods, once we obtain the mea-
surements y described in (1), we apply a numerical optimization
procedure such as (2) to compute the desired image x. Our main
contribution is a novel formulation for obtaining the measure-
ments y, as described in Section 4, which improves the objective
quality in high-speed video reconstruction.

In our approach, we take the measurements in the spatio-
temporal domain, i.e., the pixel domain. In other words, W is the
identity matrix. Taking jjsjjTV ¼ jjDisjj1 and making s00 ¼ Dis0, the
optimization problem is then given by

ŝ ¼ argmins00 ðjjs00jj1Þ such that y ¼ UD�1
i s00: ð4Þ

This method is equivalent to the ‘1 minimization problem, where
the sparsifying transform is the finite differences operator.

We use TV reconstruction techniques for all tested acquisition
methods tested (see Section 5). We refer to the TV reconstruction
in 2 spatial dimensions (finite differences of lines and rows in an
image) as TV2D and to the TV reconstruction in 2 spatial and 1
temporal dimensions (finite differences among lines, rows, and
subsequent subframes) as TV3D. TV2D takes advantage of spatial
redundancies, while TV3D takes advantage of spatial and temporal
redundancies.

3. Current video acquisition methods

Traditional video acquisition produces frame pictures contain-
ing the light captured by sensors during the exposition time. If a
long exposure is used, frame pictures may appear blurry for video
scenes with a lot of movement (motion blur). However, if we
choose a very short exposure time, the picture may appear too dark
or noisy, since the amount of light that reaches each sensor is
reduced because of the shorter time interval. In order to use com-
pressive sensing reconstruction for obtaining videos with a higher
spatial or temporal resolution, we have to linearly combine the
scene samples. Without linearly combining samples in a proper
way, we cannot guarantee that the incoherence property would
be satisfied [27].

In many applications, a higher control of the light flow is desir-
able. For example, in applications like deblurring [28] or compres-
sive sensing video acquisition [11,29,10], it is necessary to start
and finish exposure several times during one frame interval. A
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