
Massive parallelization of approximate nearest neighbor search
on KD-tree for high-dimensional image descriptor matchingq

Linjia Hu, Saeid Nooshabadi ⇑
Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA

a r t i c l e i n f o

Article history:
Received 16 July 2016
Revised 5 January 2017
Accepted 11 January 2017
Available online 12 January 2017

Keywords:
KD-tree
Approximate nearest neighbor search
Parallel algorithm
GPU
CUDA
Image descriptor matching

a b s t r a c t

To overcome the high computing cost associated with high-dimensional digital image descriptor match-
ing, this paper presents a massively parallel approximate nearest neighbor search (ANNS) on
K-dimensional tree (KD-tree) on the modern massively parallel architectures (MPA). The proposed algo-
rithm is of comparable quality to traditional sequential counterpart on central processing unit (CPU).
However, it achieves a high speedup factor of 121 when applied to high-dimensional real-world image
descriptor datasets. The algorithm is also studied for factors that impact its performance to obtain the
optimal runtime configurations for various datasets. The performance of the proposed parallel ANNS
algorithm is also verified on typical 3D image matching scenarios. With the classical local image descrip-
tor signature of histograms of orientations (SHOT), the parallel image descriptor matching can achieve
speedup of up to 128. Our implementation will potentially benefit realtime image descriptor matching
in high dimensions.

� 2017 Elsevier Inc. All rights reserved.

1. Introduction

Point descriptors have become popular for obtaining image to
image correspondence for 3D reconstruction and object recogni-
tion. Search for the image point descriptors that are similar to
the query, is one of the core techniques in object recognition and
surface registration. To increase the feature descriptiveness, the
image descriptors, typically, require high dimensionality [1–8].
However, feature matching in high dimensional space demand
extremely high computational workload.

There has been a large body of work in image descriptor match-
ing, exploring the efficient indexing and nearest neighbor search
(NNS) in point cloud. A brute force P-NNS comparesM query points
with all the N points in the search set, to obtain their P nearest
neighbors. It results in the time complexity of O MNð Þ [9]. Search
can be made more efficient by using spatial data structures, such
as R-tree, B-tree, quad-tree, binary space partitioning (BSP) tree,
K-means tree and K-dimensional tree (KD-tree). These structures
subdivide the space containing all the points into smaller spatial
regions, where a hierarchy is imposed on the smaller regions in a
recursive fashion. The NNS on this hierarchical spatial data struc-

ture is generally more efficient since it can prune large portions
of target dataset.

In 2D/3D point cloud object recognition and perception, NNS
require fast performance [10,11]. Unlike the typical applications
with single point query [12], the NNS in these point cloud applica-
tions involves batch processing a large number of query points to
match them against the points in the model object.

The current computing trends favor flexibility of heterogeneous
programming model that combines multicore centeral processing
unit (CPU) and many-core graphical processing unit (GPU). The
GPU, as a typical massively parallel architecture (MPA) comple-
ments the CPU through large number of computing cores, and is
finding its way into general purpose computing, where fine-grain
parallelism is need. Compute unified device architecture (CUDA)
and open computing language (OpenCL) standards exemplify this
paradigm [13,14]. In particular, GPU has been widely employed
for fast and real-time implementation of 3D image processing algo-
rithms [4,15–19]. The inherent massive-parallelism in NNS algo-
rithm can be exploited for implementation on any computing
platform that supports fine-grain parallelism.

To mitigate the computational workload associated with high-
dimensional digital image descriptor matching, in this paper, we
propose a massively parallel approximate P-NNS (P-ANNS) on
GPU to accelerate image descriptor matching. Our parallel P-ANNS
in all stages is fine-grain parallelized for high-dimensional image
descriptor datasets. We employ a hybrid technique which

http://dx.doi.org/10.1016/j.jvcir.2017.01.013
1047-3203/� 2017 Elsevier Inc. All rights reserved.

q This paper has been recommended for acceptance by M.T. Sun.
⇑ Corresponding author.

E-mail addresses: linjiah@mtu.edu (L. Hu), saeid@mtu.edu (S. Nooshabadi).

J. Vis. Commun. Image R. 44 (2017) 106–115

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate / jvc i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2017.01.013&domain=pdf
http://dx.doi.org/10.1016/j.jvcir.2017.01.013
mailto:linjiah@mtu.edu
mailto:saeid@mtu.edu
http://dx.doi.org/10.1016/j.jvcir.2017.01.013
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci


combines non-linear and linear search features. For backtracking
we use a priority queue which records the distances to the axis
aligned bonding box (AABB). In trading off the efforts in tree
traversal and backtracking (due to branch divergence) with the
effort in linear search (due to leaf node size or the KD-tree height),
our technique finds a near optimal performance point. Moreover,
set an upper bound on the number of backtracks for all query
points, to reduce the impact of query outliers. Further, all factors
that impact the performance are evaluated for the a near optimal
configuration of P-ANNS. The paper is organized as follows. Sec-
tion 2 presents the basic concepts of KD-tree construction, NNS
on KD-tree, and programming model of CUDA. Section 3 briefly
outlines the related works and highlights the innovations in the
proposed work. Section 4 presents the design and implementation
details of our massively parallel P-ANNS on GPU. Section 5 dis-
cusses the experimental results. Section 6 concludes the paper.

2. Background

2.1. KD-tree

The KD-tree is a hierarchical spatial partitioning data structure
for organizing elements (points) in K-dimensional space RK . KD-
tree provides the structure to perform P-NNS, with the average
and best time complexity of O N logNð Þ and O Nð Þ, respectively,
and a space complexity of O Nð Þ [20]. KD-tree partitions the points
in the dataset into axis-aligned cells in a hierarchical fashion, with
each cell represented by a node in the tree. Starting at the root of
KD-tree, the cells are partitioned into two halves by a cutting
hyperplane orthogonal to a chosen partition dimension. Typically,
the dimension with the maximum span is selected as the partition
dimension, and the split value is chosen as the median. Alterna-
tively, the midpoint between the extreme points in that dimension
is chosen as the split mark. Each of the two split cells from the root
is then recursively split, in the same manner, into other cells. The
recursive branching terminates when the number of points that
are contained in a cell is no more than a given upper bound. For
a KD-tree with leaf nodes containing only a single point, the height
is log2N.

2.2. NNS on KD-tree

In NNS problem, given are set S of N searchable reference points,
set Q ofM query points, and a distance metric (e.g., Euclidean, Man-
hattan and Mahlanobis) in K dimensions. In a P-NNS, the purpose is
to search for the P closest points in S for each point q in Q.

For high dimesional feature matching, the most promising
approximate indexing structures and NNS algorithms including
KD-Tree, K-means tree, and locality sensitive hashing (LSH), are
evaluated in [8].

The P-NNS on KD-tree can be more efficient since large portions
of search region are quickly pruned. Starting from the root node,
the search moves down the tree using depth first search (DFS).
Once the search reaches a leaf node, ‘P points within this node with
the shortest distances to the query point are selected as the initial P
nearest neighbor candidates. However, the initial candidates may
not necessarily be the nearest neighbors to the query point. This
requires further search for the best candidates in the neighborhood
of this initial cell. In the standard search, implemented through
backtracking, a closer subtree is visited prior to visiting the more
distant subtree [21]. To avoid visiting the unproductive nodes, in
this work we replace the normal queue with a priority queue.

In high-dimensional space, the efficiency of exact search on KD-
tree is no better than the brute force technique, as most nodes need
to be visited [22,21,23]. Therefore, practical KD-tree based applica-

tions perform ANNS [23], by simply setting an upper bound on the
number of leaf nodes that can be visited. ANNS can perform order
of magnitude faster, with a relatively small number of errors.

2.3. Graphical processing unit (GPU) programming model

In this paper, we use CUDA,1 to parallelize NNS for high-
dimensional image descriptor matching on the KD-tree on the
GPU. CUDA employs a single instruction multiple data (SIMD) or a
single programmultiple threads (SPMT) computing paradigm, where
parallel programs are encapsulated in kernel functions written in
CUDA. All program copies, viz. threads, are executed in parallel, inde-
pendent of each other. Threads are further grouped into a thread
block. Threads in a thread block have access to a common shared
memory. Thread blocks in turn are arranged in a gridwith a common
access to the global dynamic random access memory (DRAM) or
cache. The thread blocks are executed on the GPU multiprocessors
(with 32 compute cores) in units of 32 threads as a thread warp.

In spite of ongoing advances in GPU architecture and program-
ming model, there are severe limitations that make the parallel
programming on GPU challenging compared with the multi-core
or cluster platforms. Limitations include small runtime stack, cache
and shared memory sizes that result in the global memory access
latency to be a severe draw on performance. The NNS on the KD-
tree cannot be parallelized in a straightforward manner due to
its non-linear and divergent nature.

3. Related work and proposed innovation

3.1. Related work

There has been a great deal of work on employing parallel archi-
tecture to accelerate NNS in a broad range of areas. These works
can be classified into two categories: linear and non-linear
searches.

3.1.1. Linear NNS
Linear search algorithms use brute force approach in which the

distances between the query point in Q and the reference points in
S are computed in parallel. Then, a sequence of parallel scan on
GPU is deployed to locate the point with the shortest distance.
The parallel implementations of these linear search algorithms
on GPU are straightforward. The expected time complexity of these
parallel algorithms is OðN2=CÞ, where C is the number of available
cores that can execute in parallel. The work in [25] applied a par-
allel linear search method for photon mapping to locate the nearest
photons in the grid and compute the radiance estimation at any
surface location in the scene. In [26] points were stored as textures
on GPU memory, and three program fragments were used to com-
pute Manhattan distances, and then perform reductions to find the
minimum distance. The work in [27] implemented a bucket sort on
GPU to partition 3D points into cells. A parallel linear search was
used to find the best matches for query points in the buckets.

The work in [28] used an octree and proposed to deploy shifted
sorting to sort both query and reference points on the GPU. It used
Morton codes to order the octree cells [29,30]. The NNS was imple-
mented through multiple iterations of shifted sorting on GPU.
These works focus on the domain of the computer graphic applica-
tions with three-dimensional datasets. The data structures
employed were adapted to specific needs of the applications.

The work in [12] used an R-tree and proposed a traversal algo-
rithm for multidimensional range query that converts recursive

1 Compute Unified Device Architecture (CUDA) [24] is a C/C++ extension parallel
programming model created by NVIDIA for GPU platforms.

L. Hu, S. Nooshabadi / J. Vis. Commun. Image R. 44 (2017) 106–115 107



Download English Version:

https://daneshyari.com/en/article/4969363

Download Persian Version:

https://daneshyari.com/article/4969363

Daneshyari.com

https://daneshyari.com/en/article/4969363
https://daneshyari.com/article/4969363
https://daneshyari.com

