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a b s t r a c t

In this paper we present a single and a multiple illuminant estimation physics-based algorithm. Both
algorithms are based on the mean projections maximization assumption and un-centered component
analysis. The proposed assumption is validated for a large collection of images and later used to estimate
the illuminant color. The multiple illuminant estimator assumes that the spectral power distribution of
the light source is not the same for the whole scene, which is the case for a wide range of images. In such
cases, our new multiple illuminant estimator recovers an accurate illuminants estimates map for each
input image while maintaining speed. The evaluation of the proposed algorithms on different real image
datasets is realized. The experimental results are satisfying; our algorithms maximize the trade-off
between accuracy (illuminant estimation error) and computational complexity.
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1. Introduction

Illuminant estimation from image data is a key step for many
computer vision applications. A well-known application is the
accurate reproduction of the scene colors when acquiring the
image. This is an inherent ability of the human visual system called
color constancy [1]. Scene illuminant estimation from image con-
tent is also used in photography [2], printing technologies, industry
[3], design and even in environments and ecosystems [4].

In image processing, the illuminant is the light acquired by the
camera, originating from one or several sources that illuminate a
scene. In the literature, much work has been devoted to the estima-
tion of the illuminant. Some of the proposed methods are based on
image statistics [5–8], on physics [9–14], on image structure
[15–20], or even on a fusion of existing methods [21,22]. All of
them are based on some prior knowledge and hypothesis. Scene
illuminant estimation is considered as an under-constrained prob-
lem. Therefore, the dichromatic model, the lambertian model, the
Grey world or other independent assumptions can be used to
resolve this problem. In our case, we employ the hypothesis intro-
duced in [23] based on the dichromatic model. We assume that the
illuminant is the vector that maximizes specular pixels projections

on it. This assumption is checked for the case of 3D embedded
color space. We show that the illuminant is the eigenvector of
the matrix of selected colors’ inner product. A selection criterion
for the colors involved in the estimation of the product matrix is
proposed. The resulting algorithm recovers a single illuminant
per image. However, in real images, several light sources can be
used, as the case with indoor scenes lighted by both indoor and
outdoor illumination. Based on the same assumption, we propose
a multiple illuminants estimator.

The paper is organized as follows. In Section 2, some illuminant
estimation methods are analyzed. In Section 3, we check the max-
imal projections mean assumption for 3D color space and we pre-
sent our new algorithms based on the 3D hypothesis. In the same
section, the problem of color selection is addressed, while Section 4
is devoted to accuracy evaluation of the two new algorithms on
different image collections.

2. Related works

A scene illuminant estimation algorithm can be characterized
by underlying assumptions, required prior knowledge, the color
space used and its performance. The performance of an illuminant
estimation algorithm is evaluated using angular error; that is, the
angle between the estimated and the true illuminant vector. This
means that the lower the angular error, the better the algorithm
estimates the illuminant. In Table 1, we provide a summary of
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some approaches for illuminant estimation. For each approach,
prior knowledge, color space used, the basic idea, datasets and cor-
responding angular errors are given. Scores are obtained either by
running programs or referring to papers referenced in Table 1. In
this table, we observe that the algorithms can use 3D or 2D color
spaces and are evaluated on common datasets. They differ, how-
ever, by the prior knowledge needed and the strategy adopted.
Prior knowledge may include assumptions made about reflection
models and color distribution and/or data pre-processing. Based
on required prior knowledge, we divided the existing algorithms
into two major categories: dichromatic model-based methods
and lambertian model-based methods. Depending on the strategy
used, the lambertian algorithms can be subdivided into two cate-
gories: static methods and learning methods.

Note that a basic assumption used by algorithms is the number
of illuminants lighting the scene. The majority of illuminant esti-
mation approaches [5,6,14,7,26,30,16] assumes that the spectral
power distribution of the light source is identical over the whole
scene. However, some approaches [28,29,17,32] take into account
the fact that the spectral power distribution of the light source is
not the same for the whole scene. They do not use reflectance mod-
els that consider multiple light sources; they just divide images
into patches and estimate the illuminant color for each patch. Con-
sidering the reflectance models used and the strategy adopted, we
discuss only a selected set of methods. Extensive surveys can be
found in [25,33].

2.1. Lambertian model-based approaches

Lambertian model algorithms consider perfect diffuse surfaces,
i.e. lambertian surfaces [34]. Within the static scheme category,
lambertian algorithms with fixed parameters [5–8,35] make
further assumptions about pixel distribution in the image to resolve
the illuminant estimation problem. Some of these algorithms [5–7]
were later integrated in a more general framework [26] that
includes higher order assumptions like the gray edge hypothesis.

The learning-based algorithms were previously introduced as
gamut learning by Forsyth [30]. He defines the canonical gamut
as a set of all possible colors that can appear under a white light
source as learned from the training set. The colors observed under
the unknown light source are called the input gamut. Given the
canonical gamut and the input gamut, he defines a set of all possi-
ble mappings that will bring the input gamut completely within
the canonical gamut, referred to as the feasible mappings set.
The estimation of the light color is then achieved by selecting the
mapping that produces the gamut with the largest volume [30]
or by selecting a weighted average of the feasible set [36]. Other
extensions of the gamut mapping method [31] used image deriva-
tives or even face pixels [28] rather than simply using pixel inten-
sity to compute the canonical gamut. Neural networks [27,37],
color by correlation [24], support vector regression [38], linear
regression [39] and bayesian inference [40,41],[42] are also learn-
ing algorithms for illuminant estimation. Another alternative is
learning the illuminant color directly using ground truth informa-
tion [29].

In fact, there aremanyworks thatproposea combinationof exist-
ing algorithms rather than the use of independent algorithms
[43,21,22,15–19]. This is a legitimate choice for enhancing the per-
formance of estimation, knowing that none of the existing algo-
rithms can provide satisfactory accuracy with all types of images.
Combination takes place either by combining outputs of different
algorithms(linear andnon-linear combination [21], orbycombining
statistics-based and physics-based algorithms [22]). It is also possi-
ble to combine adequate algorithms after image characterization
[15–18]or3Dgeometry classification [19,20,18]or even train adeci-
sion forest to identify the best algorithms for each image [43].

2.2. Dichromatic model-based approaches

The basic idea behind early dichromatic approaches [10] is the
use of image highlights to estimate the illuminant color. However,

Table 1
Description of some existing algorithms with their accuracy scores in terms of median and mean angular errors, respectively, between brackets. Note that best scores are reported
for each algorithm.

Algo Data, prior knowledge Color space Strategy Performance evaluation Class

CbyC [24] Single light source, lambertian reflectance,
image chromaticities, equiprobable
illuminant chromaticities

3
ffiffiffi
R
G

q
; 3

ffiffiffi
B
G

q� � Correlation and probabilities SFU Lab (3.2�, 6.6�) [25] Learning

SG [7] Single light source, lambertian reflectance RGB Weighted averaging of pixel values using the
Minkowsky norm

Color Checker (5.3�, 7.0�),
Grey Ball (5.3�, 6.1�), SFU Lab
(3.7�, 6.4�)

Static

GE [26] Single light source, lambertian reflectance,
image derivatives

RGB Weighted averaging of image derivative
using the Minkowsky norm

Color Checker (5.2�, 7.0�),
Grey Ball (4.7�, 5.9�), SFU Lab
(3.2�, 5.6�)

Static

NN [27] Single light source, lambertian reflectance,
sampled image chromaticity space

(r,g) Neuronal Network SFU Lab (7.8�, 9.2�) [25] Learning

FACE [28] Multiple light source, lambertian
reflectance, skin regions, uniform
illumination on faces

RGB Gamut mapping on skin pixels Cambridge Portrait (1.8�,
2.3�), Milan portrait (2.0�,
2.6�) [28]

Learning

NIS soft-
cv-EDC
[18]

Single light source, lambertian reflectance,
3D scene geometry models

RGB Selection of the color constancy algorithm
among four existing algorithms using the
learned 3D geometry

Linear Color Checker (2.2�,
2.8�), Grey Ball (2.6�, 3.9�)
[18]

Learning,
combination

3D HT
[12]

Single light source, dichromatic reflectance RGB Dichromatic planes intersection using 3D
Hough transform

SFU Lab (1.7�, –) [12] Static

Exemplar
[29]

Multiple light source, lambertian
reflectance, image regions

(r,g) Selection from training surfaces ground
truth

Color Checker (3.7�, 5.2�),
Grey Ball (3.3�, 4.4�) [29]

Learning

Zeta [14] Single light source, dichromatic reflectance (r,g) Selection of the geometric mean of specular
pixels

Color Checker, Grey Ball, SFU
Lab (1.9�, 4.3�) [14]

Static

GM [30] Single light source, lambertian reflectance,
canonical gamut

RGB Selection of mapping bringing the input
gamut into the canonical gamut

Color Checker (4.9�, 6.9�),
Grey Ball (5.8�, 7.1�), SFU Lab
(2.6�, 4.3�) [31]

Learning

Proposed Multiple light source, dichromatic
reflectance, maximal projections mean
assumption, refined gamut

RGB Selection of the eigenvector corresponding
to the maximum eigenvalue of the image
colors product matrix

Color Checker (4.9�, 6.3�),
Grey Ball (6.1�, 5.1�), SFU Lab
(2.4�, 5.8�)

Static
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