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a b s t r a c t 

Sensor pattern noise (SPN) is an inherent fingerprint of imaging devices, which provides an effective way 

for source camera identification (SCI). Although SPNs extracted from large image blocks usually yield high 

identification accuracy, their high dimensionality would incur a high computational cost in the matching 

stage, consequently hindering many applications that require efficient camera matchings. In this work, we 

employ and evaluate the concept of principal component analysis (PCA) de-noising in SCI tasks. Based on 

this concept, we present a framework that formulates a compact SPN representation. To enhance the 

de-noising effect, we introduce a training set construction procedure that minimizes the impact of var- 

ious interfering artifacts, which is especially useful in some challenging cases, e.g., when only textured 

reference images are available. To further boost the SCI performance, a novel approach based on linear 

discriminant analysis (LDA) is adopted to extract more discriminant SPN features. To evaluate our meth- 

ods, extensive experiments are conducted on the Dresden image database. The results indicate that the 

proposed framework can serve as an effective post-processing procedure, which not only boosts the per- 

formance, but also greatly reduces the computational cost in the matching phase. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Nowadays, the use of digital images or videos as evidence in 

the fight against physical crime and cybercrime is a norm, which 

makes multimedia forensics crucial. Typically, multimedia foren- 

sics includes source camera verification and identification, source- 

oriented images classification, integrity verification, forgery detec- 

tion, authentication, etc. Source camera identification, as an impor- 

tant branch of multimedia forensics, is about answering the ques- 

tion: Which one of the many cameras has taken the image in ques- 

tion? This is actually a task of matching the camera fingerprint of 

an image in question to a set of reference fingerprints, each repre- 

senting a different camera. The size of the reference fingerprint set 

can be in the order of millions. How to deal with such a task more 

accurately and efficiently is the focus of this paper. 

In order to link digital images to the source cameras, many 

techniques have been proposed in the last two decades. These 

techniques can be broadly divided into three categories. The sim- 
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plest way is to use digital images’ metadata that contains the in- 

formation of the source camera [1] . 

However, due to the wide prevalence and great user- 

friendliness of multimedia processing tools nowadays (e.g., Adobe 

Photoshop and IrfanView), metadata can be easily changed or re- 

moved by laymen. Therefore, metadata is no longer regarded as re- 

liable for authentication purposes. Another possible way is to use 

the digital watermark, which is a signature embedded in the im- 

age by a certain type of cameras [2] . This technique is useful in 

the cases of proving ownership of copyright. Yet it is only appli- 

cable to the cameras that have watermarking mechanism [2] . The 

third category of techniques rely on the intrinsic characteristics of 

digital cameras left in the captured images. Many traces left in the 

content by various hardware and software components in the im- 

age acquisition pipeline can be exploited to link the image to its 

source camera. Good examples are sensor pattern noise (SPN) [3–

8] , lens aberrations [9] , color filter array (CFA) interpolation arte- 

facts [10] , JPEG compression [1] , and the combination of several in- 

trinsic characteristics [11] . Among these modalities, SPN has been 

proved to be the most effective camera fingerprint as it is capable 

of differentiating individual cameras of the same model. 

Sensor pattern noise is produced by the imaging sensor and 

primarily caused by the manufacturing imperfections and the in- 
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homogeneity of silicon wafers. It is essentially the slight varia- 

tions in the intensity of individual pixels. For instance, even if a 

sensor takes an image of an evenly lit scene, the resulting image 

will still exhibit slight changes in intensity between individual pix- 

els [3] . Every image taken by the same sensor would exhibit the 

same SPN pattern, while two sensors, even made from the same 

silicon wafer, would exhibit uncorrelated patterns [3] . 

The dimensionality of SPN is as large as that of the original im- 

age. As a result, not only each SPN needs a fairly large amount 

of space for storage, but memory access would also take consider- 

able amount of time. Moreover, SPN matching involves vector op- 

erations and the complexity is proportional to the size of SPNs. 

Thus, with a large number of reference SPN in the database to be 

matched, the complexity of matching process would become a crit- 

ical concern. 

In order to address the high complexity issue, many effort s [12–

18] have been made in recent years. In [12] , Bayram et al. embe- 

ded reference SPNs in a binary search tree, where the leaf/internal 

node represents a reference/composite SPN. Based on this struc- 

ture, the total number of SPN matchings to be performed is sub- 

stantially reduced. However, errors tend to increase significantly 

when a large number of reference SPNs are stored in a single bi- 

nary tree. On the other hand, more methods reduce the computa- 

tional complexity by compressing the SPN. In [13,14] , the authors 

introduced a SPN digest technique for dimensionality reduction, 

which preserves the largest elements and their corresponding loca- 

tions. In [15] , Bayram et al. binarized SPN, which considerably re- 

duces the storage requirements and speeds up loading of SPN into 

the memory. However, the binarization process inevitably degrades 

the matching accuracy due to information loss. In [16,17] , Valsesia 

et al. reduced the dimensionality of SPN using random projection. 

However, since the subspace is randomly selected, the obtained 

representation is unlikely to be optimal and tends to compromise 

the matching accuracy. 

To alleviate the common limitation (i.e., reduced accuracy) of 

the afore-mentioned SPN compression methods [13–17] , in our 

previous work [19,20] , we presented a feature extraction algorithm 

based on the concept of PCA de-noising [21,22] , and promising re- 

sults were achieved on a small dataset. However, this method is 

based on the assumption that the training set is well representa- 

tive of the population so that an effective SPN f eature extractor can 

be learned. Unfortunately, the noise residuals in the training set 

can be contaminated by many sources of interference, making the 

training set less representative. To learn a robust SPN feature ex- 

tractor from the noisy training data, in this work, we further pro- 

pose a training set construction procedure and provide its theoreti- 

cal basis. We also provide more detailed discussion of the SPN fea- 

ture extractors and treat it as a general post-processing framework 

on other SPN methods. It is evaluated in term of effectiveness and 

efficiency on a much larger dataset. We also test this framework on 

some challenging cases, e.g., all the reference SPNs are extracted 

from images with significant scene details (a form of distortion to 

the SPN), which are scenarios barely considered by previous works. 

The rest of this paper is organized as follows. Section 2 provides 

a brief review on the three main steps of the SPN-based SCI sys- 

tem. In Section 3 , we present the proposed training dataset con- 

struction procedure and the feature extraction method in details. 

In Section 4 , the proposed source camera identification method 

is summarized, which is then followed by extensive experimental 

evaluations in Section 5 . Section 6 concludes the work. Note that, 

in this manuscript, we use bold upper-case letters to represent ma- 

trices, and bold lower-case letters to denote vectors. 

2. Background 

In order to decide whether a query image is taken by one of 

the cameras in a large dataset, three main steps are required, i.e., 

SPN extraction, reference SPN estimation and SPN matching. In this 

section, techniques for these three steps are briefly reviewed. 

2.1. SPN extraction 

The most important step of the SPN-based SCI framework is 

to extract the SPNs from digital images. In [4] , Chen et al. mod- 

eled the output of imaging sensor I and explained the general idea 

about how to extract SPN, such as 

I = (1 + K ) I (0) + � = I (0) + I (0) K + � (1) 

In Eq. (1) , I (0) is the noiseless sensor output and I (0) K represents 

the discriminative part of SPN, i.e., PRNU noise, which is a multi- 

plicative noise and the signal of our interest. The matrix K is the 

PRNU multiplicative factor, where all the elements in it are typi- 

cally close to 0. � is a combination of random noise, such as shot 

noise, read-out noise, and quantization noise. In order to extract 

the signal of interest I (0) K from the observation I , the host signal 

I (0) should be removed. Generally, the noiseless image I (0) is un- 

known, but we can estimate it by de-noising the observation I , i.e., 
ˆ I (0) = F (I ) , where F indicates a de-noising algorithm and ̂

 I (0) is an 

estimation of the noiseless image I (0) . Then, the signal of interest 

can be roughly extracted by subtracting the estimation 

ˆ I (0) from 

the observation I , such as 

X = I − F (I ) = I − ˆ I (0) 

= I (0) + I (0) K + � − ˆ I (0) 

= IK + I (0) − ˆ I (0) + (I (0) − I ) K + �

= IK + � (2) 

where X is the noise residual where the true SPN is present, � is 

the sum of � and two additional noise terms introduced by the 

de-noising filter. 

From Eq. (2) , one can see that the better a de-noising algorithm 

F is, the closer the de-noised version ̂

 I (0) is to the noiseless image 

I (0) , and thus the less noise would be introduced by the de-noising 

filter and left in the final output X . Therefore, the performance of 

a SPN extractor is primarily determined by the choice of the de- 

noising algorithm F . In [3] , Lukas et al. proposed to transform the 

noisy image I into wavelet transform domain and apply the Mihcak 

filter [23] to extract the SPN components from the high frequency 

wavelet coefficients of I . In [24] , Chierchia et al. proposed to re- 

place the Mihcak filter with a more recent technique, namely the 

sparse 3D transform-domain collaborative filtering [25] . In [26] , 

Kang et al. proposed a SPN predictor based on context adaptive 

interpolation (PCAI), which is to apply the context adaptive inter- 

polator [27] as the de-noising function F to predict the noiseless 

image I (0) and extract SPN in the spatial domain. 

Also demonstrated in Eq. (2) is the fact that the noise residual X 

contains not only the SPN term IK but also the noise term �. This 

leaves room for further enhancement. In [5] , Li demonstrated that 

the noise residual contains the traces of scene details. Therefore, Li 

proposed 5 enhancing models to attenuate the impact of scene de- 

tails. In [28] , Li and Li proposed a color-decoupled SPN extraction 

method to prevent the color interpolation errors from propagating 

into the noise residual. In [29] , Chen et al. proposed to suppress 

the JPEG blocky artifacts by transforming the noise residual into 

the discrete Fourier transform domain and suppressing the Fourier 

coefficients with extremely larger magnitude. 
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