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a b s t r a c t 

Traditional flat classification methods ( e.g. , binary or multi-class classification) neglect the structural in- 

formation between different classes. In contrast, Hierarchical Multi-label Classification (HMC) considers 

the structural information embedded in the class hierarchy, and uses it to improve classification per- 

formance. In this paper, we propose a local hierarchical ensemble framework for HMC, Fully Associative 

Ensemble Learning (FAEL). We model the relationship between each class node’s global prediction and the 

local predictions of all the class nodes as a multi-variable regression problem with Frobenius norm or 

l 1 norm regularization. It can be extended using the kernel trick, which explores the complex correla- 

tion between global and local prediction. In addition, we introduce a binary constraint model to restrict 

the optimal weight matrix learning. The proposed models have been applied to image annotation and 

gene function prediction datasets with tree structured class hierarchy and large scale visual recognition 

dataset with Direct Acyclic Graph (DAG) structured class hierarchy. The experimental results indicate that 

our models achieve better performance when compared with other baseline methods. 

Published by Elsevier Ltd. 

1. Introduction 

Hierarchical Multi-label Classification (HMC) is a variant of clas- 

sification where each sample has more than one label and all these 

labels are organized hierarchically in a tree or Direct Acyclic Graph 

(DAG). In reality, HMC can be applied to many domains [1–3] . In 

web page classification, one website with the label “football” could 

be labeled with a high level label “sport”. In image annotation, 

an image tagged as “outdoor” might have other low level con- 

cept labels, like “beach” or “garden”. In gene function prediction, 

a gene can be simultaneously labeled as “metabolism” and “cat- 

alytic or binding activities” by the biological process hierarchy and 

the molecular function hierarchy, respectively. 

A rich source of hierarchical information in tree and DAG struc- 

tured class hierarchies is helpful to improve classification per- 

formance [4] . Based on how this information is used, previous 

HMC approaches can be divided into global (big-bang) or local [5] . 

Global approaches learn a single model for the whole class hier- 

archy. Global approaches enjoy smaller model size because they 

build one model for the whole hierarchy. However, they ignore the 

local modularity, which is an essential advantage of HMC. Local ap- 

proaches first build multiple local classifiers on the class hierarchy. 
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Then, hierarchical information is aggregated across the local pre- 

diction results of all the local classifiers to obtain the global predic- 

tion results for all the nodes. We refer to “local prediction result”

and “global prediction result” as “local prediction” and “global pre- 

diction”, respectively. Previous local approaches suffer from three 

drawbacks. First, most of them focus only on the parent-child 

relationship. Other relationships in the hierarchy (e.g., ancestor- 

descendant, siblings) are ignored. Second, their models are sensi- 

tive to local prediction. The global prediction of each node is only 

decided by the local predictions of several closely related nodes. 

The error of local predictions is more likely to propagate to global 

predictions. Third, most local methods assume that the local struc- 

tural constraint between two nodes will be reflected in their local 

predictions. However, this assumption might be shaken by differ- 

ent choices of features, local classification models, and positive- 

negative sample selection rules [6,7] . In such situations, previous 

methods would fail to integrate valid structural information into 

local prediction. 

In this paper, we propose a novel local HMC framework, Fully 

Associative Ensemble Learning (FAEL). We call it “fully associative 

ensemble” because in our model the global prediction of each node 

considers the relationships between the current node and all the 

other nodes. Specifically, a multi-variable regression model is built 

to minimize the empirical loss between the global predictions of 

all the training samples and their corresponding true label obser- 

vations. 
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Our contributions are: we (i) developed a novel local hierar- 

chical ensemble framework, in which all the structural relation- 

ships in the class hierarchy are used to obtain global prediction; 

(ii) introduced empirical loss minimization into HMC, so that the 

learned model can capture the most useful information from his- 

torical data; and (iii) proposed sparse, kernel, and binary constraint 

HMC models. 

Parts of this work have been published in [8] . In this paper, we 

extend that work by providing: (i) the sparse basic model with l 1 
norm; (ii) a new application of DAG structured class hierarchy in a 

visual recognition dataset based on deep learning features; (ii) the 

sensitivity analysis of all the parameters; (iii) the performance of 

two more kernel functions (Laplace kernel and Polynomial kernel) 

in the kernel model; and (iv) statistical analysis of all the experi- 

mental results. 

The rest of this paper is organized as follows: in Section 2 we 

discuss related work. Section 3 describes the proposed FAEL mod- 

els. The experimental design, results and analysis are presented in 

Section 4 . Section 5 concludes the paper. 

2. Related work 

In this section, we review the most recent works in HMC and 

flat multi-label classification, especially those that are related to 

our work. Also, we illustrate how our framework is different from 

previous ones. 

In HMC, Both global and local approaches have been developed. 

Most global approaches are extended from classic single label ma- 

chine learning algorithms. Wang et al. [9] used association rules 

for hierarchical document categorization. Hierarchical relationships 

between different classes are defined based on the similarity of the 

documents belonging to them. Vens et al. [10] introduced a mod- 

ified version of decision tree for HMC. One tree is learned to pre- 

dict all the classes at once. Bi et al. [11] formulated the HMC as 

a graph problem of finding the best subgraph in a tree or DAG. 

Kernel dependency estimation is used to reduce the original hier- 

archy to a manageable number of single label learning problems. A 

generalized condensing sort and select algorithm is applied to pre- 

serve the parent-child relationships in the label hierarchy. Based 

on a predictive clustering tree, Dimitrovski et al. [2] proposed the 

cluster-HMC algorithm for medical image annotation. In another 

work [12] , Dimitrovski et al. introduced ensembles of predictive 

clustering trees for hierarchical classification of diatom images. 

Bagging and random forests are used to combine the predictions 

of different trees. Cerri et al. [13] introduced genetic algorithm to 

HMC. Genetic algorithm is used to evolve the antecedents of clas- 

sification rules. A set of optimized antecedents is selected to make 

a prediction for the corresponding classes. Barros et al. [14] in- 

troduced the probabilistic clustering HMC framework for protein 

function problem. The assumption is that training instances can fit 

to several probability distributions, where instances from the same 

distribution also share similar class vectors. The major drawback of 

previous global models is that they ignore the local modularity in 

the label hierarchy, such as parent-child, ancestor-descendent, and 

sibling relationships between different labels. 

Local approaches also draw heavy attention. Dumais and Chen 

[15] applied a multiplicative threshold to update local prediction. 

The posterior probability is computed based on the parent-child 

relationship. Barutcuoglu and DeCoro [16] proposed a Bayesian ag- 

gregation model for image shape classification. The main idea is 

to obtain the most probable consistent set of global predictions. 

Cesa-Bianchi et al. [17] developed a top down HMC method using 

hierarchical Support Vector Machine (SVM), where SVM learning 

is applied to a node only if its parent has been labeled as posi- 

tive. Alaydie et al. [18] introduced hierarchical multi-label boosting 

with label dependency. The pre-defined label hierarchy is used to 

decide the training set for each classifier. The dependencies of the 

children are analyzed using Bayesian method and instance based 

similarity. Ren et al. [19] proposed to address the HMC problem 

for documents in social text streams with Structural SVM (S-SVM). 

Multiple structural classifiers are built for each chunk of classes 

to overcome the unbalanced sample problem. Cerri et al. [20] pro- 

posed to build multi-layer perceptron for each level of labels in 

the label hierarchy. The predictions made by a given level are used 

as inputs to the next level. Vateekul et al. [21] introduced a hier- 

archical R-SVM system for gene function prediction. The threshold 

adjustment from R-SVM is used to mitigate the problem of false 

negatives in HMC. Valentini [22,23] presented the True Path Rule 

(TPR) ensembles. In this method, positive local predictions of child 

nodes affect their parent nodes and negative local predictions of 

non-leaf nodes affect their descendant nodes. 

Our work is inspired by both top-down and bottom-up local 

models. The top-down models propagate predictions from high 

level nodes to the bottom [15,24] . In contrast, the bottom-up mod- 

els propagate predictions from the bottom to the whole hierarchy 

[25,26] . As a state-of-the-art method, the TPR ensemble integrates 

both top-down and bottom-up rules [22] . The global prediction of 

each parent node is updated by the positive local predictions of 

its child nodes. Then, a top-down rule is applied to synchronize 

the obtained global predictions. The method is also extended to 

handle DAG structured class hierarchy [4,23] . In contrast to TPR, 

our model incorporates all pairs of hierarchical relationships and 

attempts to learn a fully associative weight matrix from training 

data. Take the “human” sub-hierarchy from the extended IAPR TC- 

12 image dataset [27] for example. Fig. 1 depicts the merits of our 

model and shows the contribution of hierarchical and sibling nodes 

on each local prediction. The weight matrix computed shows that 

each local node influences its own decision positively, while nodes 

not directly connected in the hierarchy provide a negative influ- 

ence. Since the weight matrix of our model is learned based on all 

the training samples, we can minimize the influence of outlier ex- 

amples of each node. The learning model also helps to avoid the 

error propagation problem, because all the global predictions are 

obtained simultaneously. 

Many works have also been proposed for flat multi-label classi- 

fication, where no specific hierarchical relationships between labels 

are given. Because multiple labels share the same input space and 

semantics conveyed by different labels are usually correlated, it is 

essential to exploit the correlation information contained in differ- 

ent labels by a multi-task learning framework. Ji et al. [28] devel- 

oped a general multi-task framework for extracting shared struc- 

tures in multi-label classification. The optimal solution to the pro- 

posed formulation is obtained by solving a generalized eigenvalue 

problem. Zhu et al. [29] proposed a multi-view multi-label frame- 

work with block-row regularization. The regularizer concatenates 

a Frobenius norm regularizer and l 21 norm regularizer, which are 

used to select informative views and features. To handle the miss- 

ing label problem, semi-supervised learning was introduced to 

multi-label classification. Luo et al. [30] proposed a manifold reg- 

ularized multi-task learning algorithm. A discriminative subspace 

shared by multiple classification tasks is learned while manifold 

regularization ensures that the learned predictive structure is re- 

liable for both labeled data and unlabeled data. In another work, 

Luo et al. [31] developed a multi-view matrix completion frame- 

work for semi-supervised multi-label image classification. A cross- 

validation strategy is used to learn combination coefficients of dif- 

ferent views. Inspired by the great success of deep Convolutional 

Neural Networks (CNN) in single label image classification in the 

past few years [32–34] , CNN-based multi-label image classifica- 

tion algorithms were also developed. Wei et al. [35] proposed a 

hypotheses CNN pooling framework. Different object segment hy- 

potheses are taken as inputs of a shared CNN. The CNN output re- 
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