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a b s t r a c t 

Data acquisition, storage and management have been improved, while the key factors of many phenom- 

ena are not well known. Consequently, irrelevant and redundant features artificially increase the size of 

datasets, which complicates learning tasks, such as regression. To address this problem, feature selection 

methods have been proposed. This paper introduces a new supervised filter based on the Morisita es- 

timator of intrinsic dimension. It can identify relevant features and distinguish between redundant and 

irrelevant information. Besides, it offers a clear graphical representation of the results, and it can be easily 

implemented in different programming languages. Comprehensive numerical experiments are conducted 

using simulated datasets characterized by different levels of complexity, sample size and noise. The sug- 

gested algorithm is also successfully tested on a selection of real world applications and compared with 

RReliefF using extreme learning machine. In addition, a new measure of feature relevance is presented 

and discussed. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In data mining, it is often not known a priori what features (or 

input variables 1 ) are truly necessary to capture the main charac- 

teristics of a studied phenomenon. This lack of knowledge implies 

that many of the considered features are irrelevant or redundant. 

They artificially increase the dimension E of the Euclidean space 

R 

E in which the data points are embedded ( E equals the number 

of input and output variables under consideration). This is a se- 

rious matter, since fast improvements in data acquisition, storage 

and management cause the number of redundant and irrelevant 

features to increase. As a consequence, the interpretation of the 

results becomes more complicated and, unless the sample size N 

grows exponentially with E , the curse of dimensionality [1] may 

reduce the overall accuracy yielded by any learning algorithm. Be- 

sides, large N and E are also difficult to deal with because of com- 

puter performance limitations. 

In regression and classification, these issues are often addressed 

by implementing supervised feature selection methods [2–5] . Such 

methods can be broadly subdivided into filter (e.g. RReliefF [6] , 

mRMR [7] and CFS [8] ), wrapper [9,10] and embedded methods 

(e.g. the Lasso [11] and random forest [12] ). Filters rank features, 
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E-mail address: jean.golay@unil.ch (J. Golay). 
1 In this paper, the term “feature” is used as a synonym for “input variable”. 

or subsets of features, according to a relevance measure indepen- 

dently of any predictive model, while wrappers use an evaluation 

criterion involving a learning machine. Both approaches can be 

used with search strategies, since an exhaustive exploration of the 

2 # F eat. − 1 models (all the possible combinations of features) is of- 

ten computationally intractable. Greedy strategies [13,14] , such as 

Sequential Forward Selection (SFS) [15] , can be distinguished from 

stochastic ones (e.g. simulated annealing [16,17] and ant colony op- 

timization [18,19] ). Regarding the embedded methods, the feature 

selection is a by-product of a training procedure. It can be achieved 

by the addition of constraints in the cost function of a predictive 

model (e.g. the Lasso [11] ), or it can be more specific to a given 

algorithm (e.g. random forest [12] and adaptive general regression 

neural networks [20] ). 

The present paper 2 deals with a new SFS filter algorithm. It 

relies on the idea that, although data points are embedded in 

E -dimensional spaces, they often reside on lower M -dimensional 

manifolds [22–24] . The value M ( ≤ E ) is called Intrinsic Dimension 

(ID), and it can be estimated using the Morisita estimator of ID 

[25] which is closely related to the fractal theory. The proposed fil- 

ter algorithm is supervised, designed for regression problems and 

based on this new ID estimator. It also keeps the simplicity of the 

Fractal Dimension Reduction (FDR) algorithm introduced in [26] . 

2 The main idea of this paper was partly presented at the 23rd symposium 

on artificial neural networks, computational intelligence and machine learning 

(ESANN2015) [21] . 
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Finally, the results show the ability of the new filter to capture 

non-linear relationships and to effectively identify both redundant 

and irrelevant information. 

The paper is organized as follows. Section 2 reviews previous 

work on ID-based feature selection approaches. The Morisita esti- 

mator of ID is shortly presented in Section 3 (for the complete- 

ness of the paper). Section 4 introduces the Morisita-based filter, 

and Section 5 is devoted to numerical experiments conducted on 

simulated data of varying complexity. In Section 6 , real world ap- 

plications from publicly accessible repositories are presented, and 

a comparison with a benchmark algorithm, RReliefF [6] , is carried 

out using Extreme Learning Machine (ELM) [27] . Finally, conclu- 

sions are drawn in the last section with a special emphasis on fu- 

ture challenges and applications. 

2. Related work 

The concept of ID can be extended to the more general case 

where the data ID may be a non-integer dimension D [23,26,28] . 

The value D is estimated by using fractal-based methods which 

have been presented in [23,24,29] and successfully implemented 

in various fields, such as physics [30] , cosmology [31] , meteo- 

rology [32] and pattern recognition [33,34] . These methods rely 

on well-known fractal dimensions (e.g. the box-counting dimen- 

sion [35,36] , the correlation dimension [30] and Rényi’s dimen- 

sions of q th order [37] ), and they can be used in feature selection 

[26,38] and dimensionality reduction [23] to detect dependencies 

between variables (or features). 

Traina et al. [26,39] have opened up new prospects for the ef- 

fective use of ID estimation in data mining by introducing the Frac- 

tal Dimension Reduction (FDR) algorithm. FDR executes an unsu- 

pervised procedure of feature selection aiming to remove from a 

dataset all the redundant variables. The fundamental idea is that 

fully redundant variables do not contribute to the value of the data 

ID. 

This idea can be illustrated by sampling two uniformly dis- 

tributed variables V 1 and V 2 . If they are independent, which means 

that they are not redundant, one has that: 

ID (V 1 , V 2 ) ≈ ID (V 1 ) + ID (V 2 ) ≈ 1 + 1 = 2 (1) 

where ID ( ·) denotes the ID of a dataset. It indicates that both V 1 

and V 2 contribute to increasing the value of ID ( V 1 , V 2 ) by about 

1, which is, by construction, equal to the ID of each variable (i.e. 

ID ( V 1 ) and ID ( V 2 )). Conversely, the removal of either V 1 or V 2 

would lead to a reduction in the data ID from about 2 (i.e. the 

dimension of the data space) to 1 (i.e. the ID of a single variable) 

and information would be irreparably lost. In contrast, if V 1 and V 2 

are fully redundant with each other (e.g. V 2 = V 1 ), one has that: 

ID (V 1 , V 2 ) ≈ ID (V 1 ) ≈ ID (V 2 ) ≈ 1 (2) 

where the ID of the full dataset is approximately equal to the topo- 

logical dimension of a smooth line. This means that the contribu- 

tion of only one variable is enough to reach the value of ID ( V 1 , V 2 ) 

and the remaining one can be disregarded without losing any in- 

formation. 

Based on these considerations, the FDR algorithm removes the 

redundant variables from a dataset by implementing a Sequential 

Backward Elimination (SBE) strategy [13] . Besides, it uses Rényi’s 

dimension of order q = 2 , D 2 , for the ID estimation. Following the 

same principles, De Sousa et al. [40] examined additional develop- 

ments to FDR and presented a new algorithm for identifying sub- 

groups of correlated variables. 

FDR is designed to carry out unsupervised tasks, and it is not 

able to distinguish between variables that are relevant to a learn- 

ing process and those that are irrelevant. The reason is that such 

variables can all contribute to the data ID. For instance, in Eq. (1) , 

V 1 could be regarded as irrelevant to the learning of V 2 , but it 

would be selected by FDR because it makes the data ID increase by 

about 1. Consequently, different studies were carried out to adapt 

FDR to supervised learning. Lee et al. [41] suggested decoupling the 

relevance and redundancy analysis. Following the same idea, Pham 

et al. [42] used mutual information to identify irrelevant features 

and combined the results with those of FDR. Finally, Mo and Huang 

[38] developed an advanced algorithm to detect both redundant 

and irrelevant information in a single step. Their algorithm follows 

a SBE search strategy and relies on the correlation dimension, df cor , 

for the estimation of the data ID. 

The filter algorithm suggested in the present paper is designed 

in such a way that it combines the advantages of both FDR and 

Mo’s algorithm: it can deal with non-linear dependencies, it does 

not rely on any user-defined threshold, it can discriminate between 

redundant and irrelevant information, and the results can be easily 

summarized in informative plots. Moreover, it can cope with high- 

dimensional datasets thanks to its SFS search strategy, and it uses 

the Morisita estimator of ID which was shown to yield comparable 

or better results than D 2 and df cor [25] . 

3. The Morisita estimator of intrinsic dimension 

The Morisita estimator of ID, M m 

, has been recently introduced 

[25] . It is a fractal-based ID estimator derived from the multipoint 

Morisita index I m, δ [29,43] (named after Masaaki Morisita who 

proposed the first version of the index to study the spatial clus- 

tering of ecological data [44] ). I m, δ is computed by superimposing 

an E -dimensional grid of Q quadrats (i.e. cells) of diagonal size δ
onto the data points. It measures how many times more likely it 

is that m ( m ≥ 2) randomly selected points will be from the same 

quadrat than it would be if all the N points of the studied dataset 

were distributed at random (i.e. according to a random distribution 

generated from a Poisson process). The formula is the following: 

I m,δ = Q 

m −1 

∑ Q 
i =1 

n i (n i − 1)(n i − 2) · · · (n i − m + 1) 

N(N − 1)(N − 2) · · · (N − m + 1) 
(3) 

where n i is the number of points in the i th quadrat. For a fixed 

value of m, I m, δ is calculated for several values of δ on a chosen 

scale range. If a dataset approximates a fractal behaviour (i.e. is 

self-similar) within this range, the relationship of the plot relating 

log ( I m, δ) to log (1/ δ) is linear, and the slope of the regression line 

is defined as the Morisita slope S m 

. Finally, M m 

is expressed as: 

M m 

= E −
(

S m 

m − 1 

)
. (4) 

In practice, each variable is rescaled to the [0, 1] interval (so is the 

grid), and δ can be replaced with the quadrat edge length � , with 

� −1 being simply the number of quadrats along each axis of the 

data space. Then a set of R values of � (or � −1 ) is chosen so that 

it captures the linear part of the log-log plot. In the rest of this 

paper, only M m = 2 will be used, and it will be computed with an 

algorithm called Morisita INDex for Intrinsic Dimension estimation 

(MINDID) [25] whose complexity is O(N ∗ E ∗ R ) . 

4. The Morisita-based filter for regression problems 

The Morisita-Based Filter for Regression problems (MBFR) relies 

on three observations following from the work by Traina et al. [26] , 

De Sousa et al. [40] and Mo and Huang [38] : 

1. Given an output variable Y generated from k relevant and non- 

redundant input variables X 1 , . . . , X k , one has that: 

ID (X 1 , . . . , X k , Y ) − ID (X 1 , . . . , X k ) ≈ 0 (5) 

where ID ( ·) denotes the (possibly non-integer) ID of a dataset. 
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