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a b s t r a c t 

Two-stage multiple kernel learning (MKL) algorithms have been extensively researched in recent years 

due to their high efficiency and effectiveness. Previous works have attempted to optimize the combina- 

tion coefficients by maximizing the centralized kernel alignment between the combined kernel and the 

ideal kernel. Though demonstrating previous promising performance, we observe that these algorithms 

may suffer from the approaching in calculating the alignment. In particular, we observe that the local 

information should be incorporated when computing the kernel alignment, which is beneficial to further 

improve the classification performance. To this end, we first define the local kernel alignment based on 

centralized kernel alignment. A new kernel alignment that combines the global and local information of 

base kernels is then developed. After that, we propose an alternative algorithm with proved convergence 

to identify the multiple kernel coefficients. Intensive experimental results show that the performance of 

the proposed algorithm is superior to those of existing MKL algorithms. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years, multiple kernel learning (MKL) has been ex- 

tensively studied in machine learning community [1–9] . Different 

from traditional kernel methods where the kernel selection is left 

to users, MKL algorithms only require users to pre-specify a set 

of base kernels, and automatically learn the optimal coefficients 

for classification tasks. Existing MKL algorithms can roughly be 

grouped into two categories in terms of the training methodology. 

The first category is one-stage algorithms [10–13] , which simulta- 

neously learn the optimal kernel combination parameters and the 

structural parameters of a classifier. Differently, the second cate- 

gory is two-stage algorithms [1,14–18] . They first learn an optimal 

kernel K according to a certain criteria, and then apply the learned 

optimal kernel K into a standard kernel-based algorithm such as 

support vector machine (SVM). As a typical representation of the 

second category, kernel target alignment algorithm was first pro- 

posed in [19,20] . It learns the optimal kernel coefficients by max- 

imizing centered kernel alignment between the combined kernel 

and the target kernel. Compared with one-stage algorithms, two- 

stage algorithms exhibit the following advantages: i) they consume 

less computational cost while achieving comparable or even better 

performance; ii) they are more flexible since the learned optimal 
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kernel can be used directly in both classification and regression 

tasks. 

Nevertheless, although the kernel alignment bears these good 

properties, we observe that it is calculated in a global way, which: 

i) rigidly forces closer and further sample pairs to be equally 

aligned to the same similarity, and neglects the intra-class vari- 

ation of samples; and ii) is inconsistent with a well-established 

concept that the similarity evaluated for two further samples in a 

high dimensional space is less reliable due to the presence of un- 

derlying manifold structure. As a consequence, maximizing global 

kernel alignment could make these pre-specified kernels less effec- 

tively utilized, and in turn adversely affect the classification perfor- 

mance. 

To address these issues, we propose the local kernel alignment 

and the corresponding algorithm in this paper. Local kernel align- 

ment discards the kernel values of dissimilar samples, and thus, 

it avoids the above-mentioned disadvantages. In specific, we first 

choose the k -nearest neighbors for the i th sample where i ∈ {1, 2, 

���, N }, then compute the local kernels K i ∈ R 

k ×k and their corre- 

sponding target kernels T i . After that, we align the average kernel 

of all local kernels and the average target kernel. To further un- 

derstand the local kernel alignment, we use Fig. 1 to illustrate the 

difference between our local kernel alignment and global kernel 

alignment. 

By revisiting the local kernel alignment, we observe that the 

samples belonging to different classes while with similar features 

will influence the performance if we only maximize the local ker- 
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Fig. 1. Global kernel alignment and local kernel alignment. The K ( i j , i k ) in the local 

kernel indicates kernel value between the k th and j th neighbors of the i th sample. 

nel alignment. In fact, both global and local kernel alignment have 

their shortcomings. Therefore, these two approaches are comple- 

mentary, which indicates that the shortcomings will be overcome 

by combining these approaches. In this paper, we integrate the ad- 

vantages of both the global and local kernel alignment, and max- 

imize the hybrid kernel alignment to achieve higher performance. 

Extensive experiments have been conducted to compare the pro- 

posed algorithm with state-of-the-art MKL algorithms on 10 UCI 

and 6 MKL benchmark datasets. These results clearly validate the 

effectiveness of the proposed algorithm. 

We end up this section by summarizing the contributions of 

our work as follows: i) We first propose the local kernel align- 

ment, which compute and align the kernels in a local way; ii) We 

propose a novel kernel alignment approach that concurrently con- 

siders global and local kernel alignment; iii) We design an alter- 

native algorithm with proved convergence to optimize the coeffi- 

cient of the combined kernel. This algorithm is simple and easy-to- 

implement. The experimental results also show the effectiveness of 

our proposed algorithm. 

The remainder of this paper is organized as follows. 

Section 2 briefly discusses related works. Section 3 presents 

the technical details of the proposed concepts and algorithm. 

Section 4 reports the results of the comparative experiments. 

Finally, Section 5 summarizes the paper and presents future 

research issues. 

2. Related work 

Let { φ(x i ) , y i } n i =1 
denote the training set, where φ(x i ) = 

[ φ� 
1 
(x i ) , · · · , φ� 

m 

(x i )] � , { φp (·) } m 

p=1 
are the feature mappings that 

corresponding to m pre-defined base kernels { K p (·, ·) } m 

p=1 
, and y i 

is the class label of x i . In the following sections, we also use { X, 

Y } to represent the training set. We assume that the base ker- 

nels are positive semi-definite (PSD), and consider a kernel func- 

tion K with the form K = 

∑ m 

p=1 μp K p where μ = (μ1 , · · · , μm 

) � is 

selected from �q = μ : μ ≥ 0 , ‖ μ‖ q = 1 . 

2.1. Kernel alignment 

Kernel alignment is defined as the similarity between two ker- 

nels [20] . The alignment of two kernel matrices is calculated as 

follows: 

ρ(K 1 , K 2 ) = 

〈 K 1 , K 2 〉 F √ 〈 K 1 , K 1 〉 F 〈 K 2 , K 2 〉 F 
(1) 

The work in [1] proposes to optimize the kernel alignment by re- 

stricting the trace of the kernel matrix to be 1. Then it can be con- 

verted into an semi-definite programming (SDP) problem using ar- 

bitrary kernel weights in the combination. By restricting the kernel 

weights to be non-negative, the SDP formulation can be reduced to 

a quadratically constrained quadratic programming (QCQP) prob- 

lem. 

max 

m ∑ 

p=1 

μp 〈 K p , YY 

� 〉 F , 

s.t. μ ∈ R 

m 

+ , 
m ∑ 

p=1 

m ∑ 

h =1 

μp μh 〈 K p , K h 〉 F ≤ 1 . 

(2) 

In [21] , they propose maximizing the kernel alignment using 

gradient-based optimization. They compute the gradients with re- 

spect to the coefficients as: 

∂(K μ, YY 

� ) 
∂μp 

= 

〈 ∂K μ
∂μp 

, YY 

� 〉 F 〈 K μ, K μ〉 F − 〈 K μ, YY 

� 〉 F 〈 ∂K μ
∂μp 

, K μ〉 F 
N 

√ 〈 K μ, K μ〉 3 
F 

(3) 

To prevent overfitting, the work [19] add a regularization term 

to the objective function. The resulting QP is very similar to the 

hard margin SVM optimization problem and can be solved in 

a similar way. To accelerate the optimizing procedure, the work 

in [22] chooses to optimize the distance between the combined 

kernel matrix and the ideal kernel, instead of optimizing the ker- 

nel alignment measure. The optimization problem is described in 

Eq. (4) . By this way, the corresponding optimized problem can be 

quickly solved. 

min 〈 K μ − YY 

� , K μ − YY 

� 〉 2 F , s.t. μ ∈ R 

m 

+ , 
m ∑ 

p=1 

μp = 1 . (4) 

2.2. Centered kernel alignment for two-stage MKL 

Let K and K 

′ be two kernel functions defined over χ × χ
such that 0 < E [ K 

2 
c ] < + ∞ and 0 < E [ K 

′ 2 
c ] < + ∞ . The center kernel 

alignment [15] between K and K 

′ is defined by: 

ρg (K, K 

′ ) = 

E [ K c K 

′ 
c ] √ 

E [ K c ] 2 E [ K 

′ 
c ] 

2 
, (5) 

where K c is the center kernel of K described in [15] as follows: 

K c (x, x ′ ) = K(x, x ′ ) − E x [ K(x, x ′ )] 

− E x ′ [ K(x, x ′ )] + E x,x ′ [ K(x, x ′ )] . 
(6) 

Let K ∈ R 

n ×n and K 

′ ∈ R 

n ×n be kernel matrices associated with 

K and K ’, respectively. Then, the alignment between K and K 

′ is 

defined by 

̂ ρg (K , K 

′ ) = 

〈 K c , K 

′ 
c 〉 F 

‖ K c ‖ F ‖ K 

′ 
c ‖ F 

(7) 

where K c is the corresponding center kernel of K c which is defined 

as follows: 

(K c ) i j = K i j −
1 

n 

n ∑ 

i =1 

K i j 

− 1 

n 

n ∑ 

j=1 

K i j + 

1 

n 

2 

n ∑ 

i,i =1 

K i j 

(8) 

Then, the kernel combination coefficients are optimized by solv- 

ing the following problem, 

max 
μ∈ �

̂ ρg ( 
m ∑ 

p=1 

μp K p , YY 

� ) . (9) 



Download	English	Version:

https://daneshyari.com/en/article/4969523

Download	Persian	Version:

https://daneshyari.com/article/4969523

Daneshyari.com

https://daneshyari.com/en/article/4969523
https://daneshyari.com/article/4969523
https://daneshyari.com/

