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a b s t r a c t 

Networks derived from many disciplines, such as social relations, web contents, and cancer progression, 

are temporal and incomplete. Link prediction in temporal networks is of theoretical interest and practical 

significance because spurious links are critical for investigating evolving mechanisms. In this study, we 

address the temporal link prediction problem in networks, i.e. predicting links at time T + 1 based on 

a given temporal network from time 1 to T . To address the relationships among matrix decomposition- 

based algorithms, we prove the equivalence between the eigendecomposition and nonnegative matrix 

factorization (NMF) algorithms, which serves as the theoretical foundation for designing NMF-based algo- 

rithms for temporal link prediction. A novel NMF-based algorithm is proposed based on such equivalence. 

The algorithm factorizes each network to obtain features using graph communicability, and then collapses 

the feature matrices to predict temporal links. Compared with state-of-the-art methods, the proposed al- 

gorithm exhibits significantly improved accuracy by avoiding the collapse of temporal networks. Experi- 

mental results of a number of artificial and real temporal networks illustrate that the proposed method 

is not only more accurate but also more robust than state-of-the-art approaches. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The network (sometimes called graph) effectively characterizes 

and analyzes complex systems, in which each vertex represents an 

individual, such as a biological entity (e.g., a gene or a protein), 

a web user, or a terminal in Internet. Each link denotes an in- 

teraction between a pair of vertices. Various real-world networks 

have been derived from, such as social networks [1,2] , technologi- 

cal networks [3] and biological networks [4] . Network analysis has 

emerged as a key technique in modern science with the immediate 

purpose of discovering graph patterns by elucidating the structure- 

function relationship of overall systems. For example, communi- 

ties in protein interaction networks correspond to the protein com- 

plexes that are critical for biological processes [5] . 

However, many networks are incomplete because of the limita- 

tions of our knowledge regarding complex systems, which signifi- 

cantly hinder the practical application of network analysis. For ex- 

ample, nearly 80% of interactions within yeast [6] and 99% within 

human [7] remain unknown. Accordingly, link prediction plays a 

critical role in network analysis [8,9] , which does not only help us 
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recover data, but also improve our understanding of the mecha- 

nisms of networks. 

Therefore, approaches for predicting links in networks are ur- 

gently required, and considerable efforts have been exerted to ad- 

dress this issue [9–12] . Available methods for link prediction can 

be categorized into two classes: experimental and computational 

methods. Experimental methods use a physical strategy to vali- 

date the existence of links. They fail to provide satisfactory an- 

swers primarily due to the limitations of finance and technology. 

These methods are also costly and time-consuming, particularly 

for validating interactions among proteins through biological ex- 

periments [13] . Thus, computational methods for predicting links 

based on known interactions becomes alternatives for experimen- 

tal approaches [14–19] . 

However, the vast majority of available algorithms focus on 

static networks, where the ultimate goal is to predict links to de- 

scribe a complete picture of the whole network structure [3] . Many 

networks derived from the real world dynamically change over 

time (called temporal or dynamic networks) [20] . For example, in 

scientific collaboration networks, interactions evolve since scien- 

tists directly change their collaborators as they shift their research 

directions [21] . In disease networks, cancer metastasis is mainly 

due to cancer cell immigration [22] . Thus, the analysis of tempo- 

ral networks has received considerable attention because the evo- 
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lution patterns provide novel insights into the underlying mecha- 

nisms of complex networks [20,23–26] . 

Accordingly, the prediction of links in temporal networks is a 

promising and interesting subject because it is the foundation for 

network analysis. Unlike missing link prediction in static networks, 

the temporal link prediction problem obtains the edges in a network 

at time T + 1 based on given temporal network from time 1 to T . 

This problem is applied to a variety of contexts, such as collabo- 

rative filtering [27] and social network connections [28] . However, 

designing algorithms for the temporal link prediction problem is 

highly non-trivial [3] because of two reasons. First, features in tem- 

poral networks are significantly more complicated than those in 

static ones, and thus, they are difficult to characterize and extract. 

Second, the complexity of temporal networks poses a considerable 

challenge to designing effective and efficient algorithms. 

Although the process is difficult, many algorithms for predicting 

temporal links have been proposed [29–31] . Sharan et al. [30] col- 

lapsed dynamic networks to predict temporal links by summing 

the matrices associated with networks, thereby saving running 

time by sacrificing accuracy. To fully utilize topology structure, 

the Katz index predicts temporal links by counting the number of 

paths. Matrix decomposition-based algorithms [29,31] , such as sin- 

gular value decomposition (SVD) and tensor decomposition (TD), 

have been developed to predict temporal links using low-rank ap- 

proximation. These algorithms initially collapse temporal networks 

and then predict temporal links based on the collapsed network, 

which liminates critical information hidden in dynamic networks, 

thereby affecting the performance of algorithms. To avoid the col- 

lapse of temporal networks, Acar et al. [29] provided a TD method 

for the temporal link prediction problem, and this method dramat- 

ically improved the accuracy of algorithms. 

Although considerable effort s have been devoted to the tem- 

poral link prediction, some problems remains unsolved, including 

determining the theoretical relationship among matrix decomposi- 

tion algorithms and improving the accuracy of algorithms. In this 

work, the first problem is addressed by proving the equivalence 

between the eigendecomposition (ED) and nonnegative matrix fac- 

torization (NMF) based algorithms. To address the second issue, 

an NMF-based algorithm is developed without collapsing dynamic 

networks, which significantly improves the accuracy of algorithms. 

Overall, the main contributions of this study can be summa- 

rized as follows. 

• We prove the equivalence between the eigendecomposition and 

nonnegative matrix factorization algorithms in temporal net- 

works, which serves as the theoretical foundation for designing 

NMF-based algorithms for the temporal link prediction prob- 

lem. 
• Two NMF-based frameworks for the temporal link prediction 

problem have been proposed based on the proven equivalence 

by using graph communicability. The two frameworks differ 

greatly in terms of objects to collapse. The first framework col- 

lapses temporal features, whereas the second framework col- 

lapses temporal networks. 
• The proposed method outperforms state-of-the-art methods by 

using both the artificial and real-world dynamic networks. 

The remainder of this paper is organized as follows. The pre- 

liminaries are presented in Section 2 . Related works are reviewed 

in Section 3 . The equivalence relationship is proven in Section 4 . 

The proposed algorithm is described in Section 5 . The experimen- 

tal results are presented in Section 6 . The extension of algorithms 

and conclusion are provided in Sections 7 and 8 , respectively. 

2. Preliminaries 

Terminologies that are extensively used in the subsequent sec- 

tions are first introduced prior to presenting the detailed descrip- 

tion of the proposed algorithms. Let { 1 , 2 , . . . , T } be a finite set of 

time points. For a given variable, the attached subscript t repre- 

sents the value of the variable at time point t (time t for short). 

The temporal (dynamic) network G is defined as a sequence of net- 

works G = { G 1 , G 2 , . . . , G T } , where G t is the network at time t with 

a vertex set V t and an edge set E t . Without loss of generality, we 

assume that all of the networks in G have the same vertex set, 

i.e. G t = (V, E t ) . The temporal network G can be represented by 

a 3-dimensional matrix (tensor) W = (w i jt ) n ×n ×T , where n is the 

number of vertices (i.e. n = | V | ) and w ijt is the weight on edge ( v i , 

v j ) in G t . Actually, W = [ W 1 , W 2 , . . . , W T ] , where W t = (w i jt ) n ×n is 

the weighted adjacency matrix of network G t (also called the t th 

slice of W ). The degree of vertex v i in network G t is defined as the 

sum of the weights on the edges connected to it, i.e. d it = 

∑ 

j w i jt . 

We assume all of the network in G are undirected. The charac- 

teristic polynomial of matrix W t is defined as P G t (x ) = det(x I − W t ) . 

The eigenvalue λ satisfies equation W t x = λx for certain non-zero 

vectors x ∈ R n , where x is called an eigenvector of matrix W t 

belonging to eigenvalue λ. We denote the eigenvalues of G t as 

λ1 t , . . . , λnt . Because W t is real and symmetric, the eigenvalues are 

real numbers. Without loss of generality, we assume that λ1 t ≥ ���
≥ λnt . 

The temporal link prediction problem is an extension of miss- 

ing link prediction, which is defined as fellows: given the temporal 

network G = { G 1 , G 2 , . . . , G T } , links in network G T +1 are predicted 

based on G, i.e. a function f should be constructed, such that 

W T +1 = f (W 1 , . . . , W T ) . (1) 

3. Related works 

In this section, we briefly review the matrix-based algo- 

rithms for temporal link prediction problem, which are classi- 

fied into three classes: network collapse, topology, and matrix 

decomposition-based approaches. 

Typical network collapsing-based approaches include collapsing 

tensor (CT) [32] and weighted CT (WCT) [30] . The CT algorithm 

collapses G by averaging link weights, i.e. 

X = 

T ∑ 

i =1 

W t /T . (2) 

Then, it predicts temporal links by setting W T +1 = X, which is criti- 

cized for its assumption that all networks are equally important. In 

fact, networks close to time T + 1 are more important than those 

that are far away from it. To overcome this problem, WCT assigns 

a weight to each network and collapses G by damping the time 

points backward as follows: 

X = 

T ∑ 

t=1 

(1 − θ ) T −t W t , (3) 

where θ ∈ (0, 1) is a parameter controlling the relevant importance 

of W t . WCT predicts temporal links by setting W T +1 = X . Similar 

strategy is presented [30] . 

Network collapse-based algorithms are criticized for their low 

accuracy because they only use the average edge weight, and thus, 

fail to fully explore the topological structure of temporal networks. 

To overcome this problem, the Katz index [33] measures the sim- 

ilarity between vertex v i and v j as the weighted sum of the paths 

connecting them, i.e. 

k i jt = 

+ ∞ ∑ 

i =1 

β l p [ l] 
i jt 

, (4) 
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