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a b s t r a c t 

Conventional matrix completion methods are generally based on rank minimization. These methods as- 

sume that the given matrix is of low-rank and the data points are drawn from a single subspace of 

low-dimensionality. Therefore they are not effective in completing matrices where the data are drawn 

from multiple subspaces. In this paper, we establish a novel matrix completion framework that is based 

on self-representation. Specifically, least-square, low-rank, and sparse self-representations based matrix 

completion algorithms are provided. The underlying idea is that one data point can be efficiently recon- 

structed by other data points belonging to a common subspace, where the missing entries are recovered 

so as to fit the common subspace. The proposed algorithms actually maximize the weighted correlations 

among the columns of a given matrix. We prove that the proposed algorithms are approximations for 

rank-minimization of the incomplete matrix. In addition, they are able to complete high-rank or even full- 

rank matrices when the data are drawn from multiple subspaces. Comparative studies are conducted on 

synthetic datasets, natural image inpainting tasks, temperature prediction task, and collaborative filtering 

tasks. The results show that the proposed algorithms often outperform other state-of-the-art algorithms 

in various tasks. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

It is known that a wide range of datasets are naturally or- 

ganized in matrix form. Matrix form also provides convenience 

for storing, processing, and analysing the data. In many practical 

situations, the data matrices are incomplete, which means there 

are missing entries [1,2] . The missing-entry problems are usually 

caused by failures in data acquisition processes, or high cost to 

measure all entries. Matrix completion [3–5] is to recover a matrix 

where the entries are partially observed. It has been applied to 

many problems such as collaborative filtering [6] , classification [7] , 

and image recovery/inpainting [8] . For a given incomplete data 

matrix, it is impossible to recover the missing entries without any 

assumptions about the matrix. Conventional matrix completion 

methods assume that the given data matrix is of low-rank, which 

enables us to recover the missing entries through minimizing 

the matrix rank. The low-rank assumption is reliable and use- 

ful because datasets in many areas often have low-dimensional 

latent structures. For example, in collaborative filtering problem 

(or recommendation system) such as movie-rental service [9] , 

a movie-rating matrix is always incomplete because one person 
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usually rates only a small subset of the considered movies. Be- 

cause different customers may have similar tastes and different 

movies may get similar rating, the movie-rating matrix could be 

of low-rank. By completing the low-rank movie-rating matrix, 

customized recommendations can be made. In image processing 

problem, the pixel-matrix of an image can be of low-rank because 

the different columns or rows of the image may have similar 

brightness or texture. The low-rank property of pixel-matrix en- 

ables us to remove noises [10,11] and recover specified points or 

parts [8,12,13] of images. 

For effective low-rank matrix completion, many researchers 

provided theoretical guarantees or constraints about the missing 

rate, matrix rank, and sampling scheme. In [3] , it is proved that 

any n × n incoherent matrices of rank r can be perfectly recovered 

by rank minimization with Cn 1 . 2 r log n entries sampled uniformly 

at random. In [14–16] , lower limitations of uniformly observed en- 

tries were provided. More recently, in [17] the problem of coherent 

matrix completion was studied. As the aforementioned methods 

require sampling entries uniformly at random, in [18] , universal 

completion was proposed for strongly incoherent matrix with a 

variety of sampling schemes. To handle the matrix completion 

problem of noisy observed entries [19,20] , several methods were 

established [8,21] . For example, the work in [22] studied the prob- 

lem of matrix completion with corrupted columns and showed 
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the feasibility when the number of corrupted columns is relatively 

large. 

Generally, conventional completion methods can be summa- 

rized into the following categories. The first category is matrix fac- 

torization [23,24] based methods. Given a partially observed m × n 

matrix of rank- r ( < min ( m, n )), one can recover the missing entries 

through optimizing two matrices of m × r and r × n whose prod- 

uct is the completed matrix [23] . The matrix factorization based 

matrix completion is non-convex and the method requires the rank 

r to be known in advance. In [12] , it is proposed to recover miss- 

ing entries through matrix factorization with dynamically adjusted 

r . The method is based on a nonlinear successive over-relaxation 

scheme that only requires solving a linear least-squares problem 

per iteration instead of a singular value decomposition. Another 

category is nuclear-norm minimization related methods [3,25–27] , 

which are generally convex. Fox example, in [28] , a singular value 

thresholding algorithm was proposed for matrix completion. In 

[29] inexact augmented Lagrange multiplier method was applied 

to nuclear-norm minimization. The method fills the missing entries 

with zeros and assumes that the filled matrix equals to the true 

complete matrix plus an error matrix. In [26] , alternating direction 

method [30] was used for nuclear-norm minimization. The method 

is similar with [29] but the error matrix does not appear explicitly. 

In [31] , Schatten p-norm minimization was used for matrix com- 

pletion. In [8] , truncated nuclear-norm was applied to matrix com- 

pletion. Truncated nuclear-norm [8,32] equals to the sum of the 

smallest few singular values and is better than nuclear-norm for 

rank approximation. In [13] , the generalized singular value thresh- 

olding method was studied and applied to low-rank matrix com- 

pletion. In fact, truncated nuclear-norm minimization can be re- 

garded as a special case of generalized singular value threshold- 

ing where the largest few singular values are weighted with ze- 

ros. There are also other categories of matrix completion methods, 

such as manifold optimization based methods [33–35] , which will 

not be detailed in this paper. 

It is worth noting that the aforementioned methods of matrix 

completion are under a common assumption that the given matrix 

is intrinsically of low-rank such that it can be recovered by rank 

minimization. Low-rank usually indicates that the data are from 

a single subspace of low-dimensionality, which is the foundation 

of low-rank related techniques such as principal component analy- 

sis (PCA) [10] and matrix completion. However, many datasets are 

drawn from multiple subspaces [36] . For example, in computer vi- 

sion, face images of different persons are from different subspaces 

of low-dimensionality. PCA and other single-subspace methods are 

unable to handle the problem of multiple-subspaces. Hence, nu- 

merous methods of subspaces clustering [36–39] were proposed 

to cluster the data with respect to different subspaces and ex- 

ploit the low-dimensional properties in individual subspaces. Data 

drawn from multiple subspaces usually form high-rank or even 

full-rank matrices. The presence of missing entries in such data 

matrices gives rise to difficulties for processing and analyzing the 

data [40] . The missing entries cannot be effectively recovered by 

classical matrix completion methods because they are based on 

single-subspace and rank-minimization. Recently, a few approaches 

have been proposed to handle the missing data problem of mul- 

tiple subspaces [41–43] . In [41] , a structured sparse plus struc- 

tured low-rank method was proposed for subspace clustering and 

completion. In the method, structured nuclear-norm minimization 

was performed on the incomplete data matrix while structured � 1 - 

norm minimization was performed on the coefficients matrix. In 

[43] , a method called low-rank factor decomposition (LRFD) was 

proposed for low-rank matrix completion in presence of high co- 

herence caused by multiple subspaces. In the method, the incom- 

plete data matrix was approximated by the multiplication of a dic- 

tionary matrix and a nuclear-norm penalized coefficients matrix 

that were optimized jointly. Compared with classical nuclear-norm 

minimization methods, LRFD was able to provide higher recovery 

accuracy [43] . 

In this paper, we study the matrix completion problem for both 

data from single subspace and data from multiple subspaces of 

low-dimensionality. Particularly, the multiple-subspace data matri- 

ces have the following four properties: (a) the number of sub- 

spaces and their dimensions are unknown; (b) the subspace mem- 

berships of all data points are unknown; (c) data points from a 

common subspace can form a low-rank matrix; (d) the whole 

data matrix can be of high-rank or even full-rank. We propose 

to complete matrix by matrix self-representation. Matrix self- 

representation is to represent a matrix by itself multiplying a non- 

identity matrix. In other words, the matrix is regarded as a dictio- 

nary and each data point is represented by a linear combination 

of the vector elements of the dictionary. The underlying theory of 

self-representation based matrix completion is that each data point 

can be efficiently reconstructed by data points from a common 

subspace. Then the missing entries can be recovered through fit- 

ting a good self-representation, which maximizes the correlations 

among all data points. Because the number of data points is of- 

ten larger than the dimension of the subspace, the representation 

is not unique generally. Specifically, we solve matrix completion 

problem by least-square, low-rank, and sparse self-representations. 

The optimizations are carried out by linearized ADMM(LADMM) 

[44,45] . It is worth noting that our methods are quite differ- 

ent from the methods proposed in [41] and [43] . The method 

in [41] actually performs nuclear-norm minimization based ma- 

trix completion and sparse subspace segmentation simultaneously. 

The method LRFD in [43] is a method of matrix factorization plus 

nuclear-norm minimization. Our methods are based on regularized 

self-representations. The similarity between the two methods and 

our methods is that the property of mutilple subspaces in matrix 

completion is taken into consideration. We compare our methods 

with the matrix factorization method of LMaFit [12] , nuclear-norm 

minimization method [29] , truncated nuclear-norm minimization 

method [8] , and LRFD method [43] . The experimental results in the 

tasks of synthetic matrices completion, image inpainting, temper- 

ature prediction, and collaborative filtering verify the effectiveness 

and superiority of our proposed methods. 

The contributions of this paper are as followings. First, a new 

framework of matrix completion method is established, which is 

based on self-representation and is able to recover the missing 

entries of data matrix from multiple subspaces. Second, we pro- 

pose least-square, low-rank, and sparse self-representations based 

matrix completion algorithms and provide theoretical proofs for 

their capacities. The connections between our methods and classi- 

cal rank-minimization based methods are also analysed. Third, our 

sparse self-representation based matrix completion is able to han- 

dle matrices of nonlinear latent structures. Finally, the proposed al- 

gorithms are able to complete high-rank or even full-rank matrices 

and often outperform other state-of-the-art algorithms in various 

tasks. 

The remaining content of this paper are organized into the 

following sections. In Section 2 , the previous work of matrix 

completion including classical methods and state-of-the-art meth- 

ods are introduced and discussed. Section 3 elaborates our self- 

representation based matrix completion. Section 4 are the com- 

parative studies on synthetic datasets and real problems such as 

image inpainting and collaborative filtering. Section 5 draws a con- 

clusion for this paper. 

2. Previous work of matrix completion 

Given an incomplete data matrix X ∈ � 

m × n in which the ob- 

served entries are { M i, j , ( i, j ) ∈ �}, matrix completion is to re- 
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