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a b s t r a c t 

Active learning algorithms aim at selecting important samples to label for subsequent machine learning 

tasks. Many active learning algorithms make use of the reproducing kernel Hilbert space (RKHS) induced 

by a Gaussian radial basis function (RBF) kernel and leverage the geometrical structure of the data for 

query-sample selection. Parameters for the kernel function and the k -nearest-neighborhood graph must 

be properly set beforehand. As a tool exploring the structure of data, active learning algorithms with au- 

tomatic tuning of those parameters are desirable. In this paper, local linear embedding (LLE) with convex 

constraints on neighbor weights is used to learn the geometrical structure of the data in the RKHS in- 

duced by a Gaussian RBF kernel. Automatic tuning of the kernel parameter is based on the assumption 

that the geometrical structure of the data in the RKHS is sparse and local. With the Markov matrix estab- 

lished based on the learned LLE weight matrix, the total expected path-length of the random walks from 

all samples to selected samples is proposed to be a criterion for query-sample selection. A greedy algo- 

rithm having a guaranteed solution bound is developed to select query samples and a two-phase scheme 

is also proposed for scaling the proposed active learning algorithm. Experimental results on data sets 

including hundreds to tens of thousands of samples have shown the feasibility of the proposed approach. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Labeling every sample in a data set for machine learning tasks 

is expensive. Active learning algorithms attempt to reduce the la- 

beling cost by selecting a few unlabelled samples to annotate such 

that the classifier trained based on the annotated sample is accu- 

rate. The active learning algorithm considered in this paper selects 

unlabelled samples in batches and aims at data sets of high data 

redundancy with no initial labelled samples. Many state-of-the-art 

active learning algorithms [1–11] leverage the geometrical struc- 

ture of samples and the reproducing kernel Hilbert space (RKHS) 

induced by a Gaussian radial basis function (RBF) kernel for query- 

sample selection, and require to set hyper-parameters for the RBF 

kernel and the k -nearest-neighborhood ( k -NN) graph beforehand. 

However, for the problem considered in this paper, because of no 

labelled samples, general users can have difficulty in setting the 

hyper-parameter. Active learning algorithms with automatic tuning 

of the hyper-parameter without labelled samples are rarely stud- 

ied. 

In this paper, a kernel version of locally linear embedding (LLE) 

[12] with convex constraints on the neighbor weights is used to 
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learn the geometrical structure of the unlabelled sample in the 

RKHS induced by an RBF kernel. Unlabelled samples likely to be 

met by random walks based on the Markov matrix established by 

the learned LLE weight matrix are regarded as informative samples 

and selected for manual annotation. To scale the proposed active 

learning algorithm, a two-phase scheme is also developed. There 

exist active learning algorithms based on random walks [13,14] . In 

[13] , samples are selected by considering the maximum probabil- 

ity, in an equilibrium state, that a random walker starts from the 

unselected sample and reaches the selected sample. This approach 

requires a user-feedback after selecting every query sample. In 

[14] , the expected path-length of random walks from an unlabelled 

sample to the labelled sample of each class is used for evaluating 

the importance of an unlabelled sample. Due to no consideration 

of the relationship between unlabelled samples, this approach can 

select similar unlabelled samples as query samples when selecting 

a batch of samples. In contrast, the proposed approach can select 

samples in batches and tends to select query samples covering the 

geometrical structure of data because considering the minimum of 

the total expected path-length of the random walks from all sam- 

ples to the selected sample. 

In the literature, research on automatic tuning of the hyper- 

parameter mainly focuses on supervised learning [15–17] , where 

the hyper-parameter optimizing some criterion functions in terms 
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of labelled samples is considered to be appropriate to subsequent 

tasks of supervised learning. In this paper, the hyper-parameter as- 

sociated with a spare and local geometrical structure of samples 

is preferable. Basically, the proposed approach requires to set the 

hyper-parameters for the RBF kernel and construction of the neigh- 

borhood of samples. In [18] , it turns out that without construction 

of the neighborhood of samples, a sparse and local similarity ma- 

trix for Laplacian embedding can be learned by considering a � 1 - 

norm penalty on the similarity matrix. In this paper, with the in- 

spiration of [18] , the analysis result shows that without construc- 

tion of the neighborhood of samples, sparse and local LLE weights 

can be learned with a proper setting for the parameter of the RBF 

kernel. Thus, only the parameter for the RBF kernel is required to 

tune and the appropriateness of the setting for this parameter can 

be evaluated by the sparsity of learned LLE weights. 

The contributions of this work are twofold. First, a greedy algo- 

rithm is proposed to select query samples by minimization of the 

expected path-length of random walks. The selected query sam- 

ples prove to have a guaranteed solution bound. Second, the pro- 

posed active learning algorithm can automatically tune the hyper- 

parameter without labelled samples. The sparsity of learned LLE 

weights turns out to be a promising criterion for tuning of the 

hyper-parameter for the proposed approach. 

The remaining part of this paper is organized as follows. 

Section 2 reviews related active learning algorithms. Section 3 in- 

troduces the proposed approach and a two-phase scheme for scal- 

ing the proposed active learning algorithm. Section 4 presents the 

step of tuning the kernel parameter. Section 5 shows experimental 

results. Concluding remarks are drawn at last. 

2. Related work 

A recent trend in active learning focuses on pool-based settings 

[19,20] . Pool-based active learning can be further classified into 

single instance selection and batch selection [21] . Active learning 

algorithms of single instance selection, such as [22,23] , inquire the 

label of the most uncertain sample with respect to a classification 

model and require frequent model retraining. In contrast, batch- 

mode active learning algorithms can choose several query samples 

simultaneously [21] . In the last decade, batch-mode active learning 

algorithms making use of manifold learning [1–6] and the RKHS 

[1,6–11] have shown to be effective to data sets of complicated ge- 

ometrical structures. 

In [1] , active learning is based on manifold-regularized D- 

optimal experimental design, and query samples are selected by 

minimization of the variance of a Laplacian regularized regression 

model. In [6] , based on manifold-regularized D-optimal experimen- 

tal design, the Hilbert-Schmidt independence criterion is also con- 

sidered to strengthen the dependence between sample points and 

their predictions. 

In contrast to classic experimental design, which only evaluates 

the expected prediction error on selected samples, transductive ex- 

perimental design (TED) [7] also takes into account the expected 

prediction error on unselected samples. Extensions of TED making 

use of the geometrical structure of data have come out. In [8] , TED 

is based on a manifold adaptive kernel [24] , which incorporates the 

manifold structure into the RKHS. In [3] , TED is based on the man- 

ifold structure learned by LLE. In [4] , TED is extended by localizing 

the reconstruction of a sample. 

Query samples can be selected by minimization of the differ- 

ence in the distribution between the selected and the unselected 

sample. In [9] , the maximum mean discrepancy [25] is used for 

measuring that distribution difference. In [10,11] , informative and 

representative unlabelled samples are selected as query samples. 

It turns out that a proper balance of the criteria regarding infor- 

mativeness and representativeness of samples can boost the active 

learning performance. 

Query samples can also be selected by evaluating the impor- 

tance of unlabelled samples to the learned manifold structure. In 

[2] , query samples are selected based on the clustering coefficient 

measure. In [5] , query samples are selected by minimizing the total 

shortest-path length between the unselected and the selected sam- 

ples in the k -NN graph. In [3] , the importance of samples to the 

learned manifold structure is analyzed more thoroughly by consid- 

ering all paths in the k -NN graph, and this strategy is also em- 

ployed in this study. 

Properly setting the parameters for nonlinear kernel functions 

and manifold learning is crucial for the aforementioned active 

learning algorithms. Automatic tuning of those hyper-parameters 

for active learning algorithms usually requires initial labelled sam- 

ples, such as [26,27] . Active learning algorithms are desired to have 

the capability of automatic tuning of those hyper-parameters with- 

out labelled samples. 

3. Methodology 

Let X � { x 1 , x 2 , . . . , x n } be a set of n data points in R 

d and 

˜ W � 

[ ̃  w i j ] ∈ R 

n ×n be the Markov matrix for random walks, where ˜ w i j is 

the transition probability from point j to point i with 

∑ n 
i =1 ˜ w i j = 1 . 

Denote by π � [ πi ] ∈ R 

n the vector, where π i ∈ [0, 1] is the weight 

for x i . Define a criterion function h ( S ) as 

h (S) = 1 

T (I + 

˜ W S + 

˜ W 

2 
S + 

˜ W 

3 
S + . . . ) π − n = 1 

T (I − ˜ W S ) 
−1 π − n, 

(1) 

where ˜ W S is equal to ˜ W with the i th row and the i th column set 

to zero for every x i ∈ S . If π = 1 , h ( S ) is the total expected path- 

length of the random walks beginning from the points in X and 

ending at a point in S ⊆ X by regarding the point in S as the ab- 

sorbing state in an absorbing Markov chain [28] . For brevity, h ( S ) 

is called the random-walk path-length with respect to S . If h ( S ) ≤
h ( S ′ ), S is more informative than S ′ because S has more reduction 

in the uncertainty of random walks. In this study, the set S � of � 

points such that h ( S � ) attains the minimum is selected for manual 

annotation. Selecting such � points is at least as hard as the vertex 

cover problem in a general graph, an NP-complete problem, and 

thus a greedy algorithm for obtaining S � is proposed in this study. 

The proposed algorithm has two main steps. The first main step 

establishes ˜ W and π based on a kernel version of LLE. The second 

main step selects S � from X by minimization of the criterion func- 

tion h ( S ). In the sequel, the step of establishing ˜ W is introduced 

first and followed by the proposed algorithm for selecting query 

points. Next, the time complexity of the proposed algorithm is an- 

alyzed and compared with several state-of-the-art algorithms. A 

two-phase scheme for scaling the proposed algorithm is presented 

at last. 

3.1. Construction of the Markov matrix ˜ W Based on a kernel version 

of LLE 

Denote by N k (x i ) ⊆ X the k -neighbor set of x i , in which for 

every x in N k (x i ) , either x is a k -NN of x i or x i is a k -NN of x . 

LLE assumes that data lie on a manifold which can be locally lin- 

early approximated. The neighbor weights are learned by solving 

the problem [12] : 

arg min 

w i j 

n ∑ 

j=1 

∥∥∥∥∥x j −
n ∑ 

i =1 

w i j x i 

∥∥∥∥∥
2 

2 

(2) 

subject to 

n ∑ 

i =1 

w i j = 1 , j = 1 , . . . , n, 



Download English Version:

https://daneshyari.com/en/article/4969559

Download Persian Version:

https://daneshyari.com/article/4969559

Daneshyari.com

https://daneshyari.com/en/article/4969559
https://daneshyari.com/article/4969559
https://daneshyari.com

