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a b s t r a c t 

Inherent to state-of-the-art dimension reduction algorithms is the assumption that global distances be- 

tween observations are Euclidean, despite the potential for altogether non-Euclidean data manifolds. We 

demonstrate that a non-Euclidean manifold chart can be approximated by implementing a universal ap- 

proximator over a dictionary of dissimilarity measures, building on recent developments in the field. This 

approach is transferable across domains such that observations can be vectors, distributions, graphs and 

time series for instance. Our novel dissimilarity learning method is illustrated with four standard visual- 

isation datasets showing the benefits over the linear dissimilarity learning approach. 

Crown Copyright © 2017 Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Dimension reduction algorithms used to generate visualisations 

of high dimensional data require a chart of observations which 

must follow a global or local structure. The Sammon map [43] , 

Stochastic Neighbour Embedding (SNE) [19] and variants, the Gaus- 

sian Process Latent Variable Model (GPLVM) [21] , Generative To- 

pographic Map (GTM) [7] , Metric Multidimensional Scaling (MDS) 

and Curvilinear Component Analysis (CCA) [11] assume global Eu- 

clidean structure. Bregman divergences generate mappings with 

non-metric multidimensional scaling in [45–47] however the use 

of the Euclidean distance, as in standard MDS, remains. In the case 

where the observed data is known to sit upon a non-Euclidean 

manifold it is typically assumed that local regions of the man- 

ifold are Euclidean. Algorithms such as Locally Linear Embed- 

ding [42] , Laplacian Eigenmaps [6] , Riemannian Manifold Learn- 

ing [26] and methods using geodesic distances based upon lo- 

cal Euclidean structure such as Isomap [49] , the Geodesic Nonlin- 

ear Map [25] and Curvilinear Distance Analysis [24] rely on this 

property holding. Furthermore these algorithms require smooth 

continuity between local charts. This is known to not be the 

case where a manifold is, for instance, fractal or when observa- 

tions are sparse and not true neighbours. As such the choice of 

local neighbourhood size parameters presents a challenge, caus- 

ing the potential for short-circuits in neighbourhood graphs. The 

work of FINE [10] assumes that observations sit upon a statis- 

tical Riemannian manifold which is less restrictive than the Eu- 

clidean counterpart [3] . As such FINE uses an approximation to 

the Fisher Information metric to calculate local distances between 
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observations, however each of the proposed approximations are 

not without limitations. In contrast the framework of [40] em- 

beds non-Euclidean data onto a latent sphere of with calculated 

radius. This is in contrast to almost all other dimension reduc- 

tion algorithms which do not restrict the structure of the latent 

space. 

The latent variable models GTM and GPLVM assume that ob- 

servations sit upon hyper-ellipses. In the GTM case this struc- 

ture is treated as isotropic and as such suffers from the issues of 

hyper-spherical geometry (see [23] for details). The hyper-ellipse 

of GPLVM only permits dimensions between observations to be in- 

dependent, a trait known to be false in many time series and im- 

age analysis domains for instance. These approaches are therefore 

incapable of constructing a reliable chart for complex datasets. In 

[23] it was demonstrated that dimension reduction algorithms re- 

lying on nonconvex optimisation of latent points, for instance MDS, 

CCA and GTM, perform superior to mappings using convex optimi- 

sation including PCA, LLE and Isomap. 

An alternative approach is considered in [30,31] for the task 

of pattern discovery in large datasets. Local affinity patterns are 

identified across patterns and observed dimensions to convey sig- 

nificant attributes. The test for significance involves a Euclidean 

thresholding scheme over the cleaned graph weight matrix. The 

highlighted local affinities should be anomalies or sources of infor- 

mation, allowing the user to focus on a small subset of a large col- 

lection of data. In contrast the result of information visualisation is 

to utilise all attributes of observations and present the visual map 

over all datapoints to a human for interpretation. Such a weighting 

matrix as used in [30] can however be integrated within several 

visualisation frameworks when the weighting function is specified. 

The notion and impact of non-Euclidean pattern analysis is dis- 

cussed at length in [37] . Despite the fact that there are many 
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causes of non-Euclidean observations, frameworks to handle such 

datasets are still emerging and have not been widely adopted [12] . 

When the nature of an observed manifold is of unknown topology 

one naturally is unaware of the dissimilarity measure which charts 

the manifold. It is however possible to learn such a chart using a 

combination of a set of multiple dissimilarity measures, a dictio- 

nary. This is the approach of multiple kernel learning where ker- 

nels are combined linearly or nonlinearly in order to improve re- 

gression or classification performance (see [9,15] for an overview). 

Multiple kernel learning has also been implemented in the field 

of manifold learning [2] . Multi-feature kernels were developed in 

[55] to learn features for facial recognition based on a dictionary 

approach and discriminant analysis rather than dimension reduc- 

tion. This notion is developed further in [1] where a sparse hierar- 

chical dictionary based on Gaussian kernels is used for classifica- 

tion. 

The tasks of regression and classification are by nature super- 

vised. In this paper we consider the case of dimension reduction, 

in particular visualisation, which is unsupervised and as such map- 

ping targets do not exist. The targets in this case are learned by 

minimisation of a mapping cost function such that neighbourhoods 

and the topological ordering of data is preserved. Non-Euclidean 

charts form the input to the visualisation framework of [27] re- 

lying on linear discriminant analysis. This linear approach does 

not generalise to nonlinear mappings. Another linear projection is 

used in [56] to map data whose dissimilarities are specified by a 

probabilistic measure. This approach cannot suitably map nonlin- 

ear structures, but the proposed measure can be incorporated into 

the framework of this paper. A distance metric learning approach 

is proposed in [51] focussing on clustering by adapting a kernel 

to learn a dissimilarity measure rather than fixed combinations of 

kernels. The clustering of data through spectral construction of ker- 

nels is detailed in [4] with links to Laplacian Eigenmaps, however 

this by nature learns a local descriptor of data. Using adaptive met- 

rics [17] present an analogue of PCA with the goal of intrinsic di- 

mensionality estimation rather than performing dimension reduc- 

tion. The variables of interest in data are learned in [39] in a linear 

fashion prior to dimension reduction, however the relative signif- 

icance of these features compared to one-another is not retained. 

Linear combinations of kernels form the basis of the nonlinear di- 

mension reduction performed in [53] however the kernels used are 

restricted to polynomial functions and no learning of dissimilari- 

ties upon a manifold is performed. The Canonical Correlation Anal- 

ysis approach of [57] linearly combines separate local and global 

kernels to perform dimension reduction which for certain kernel 

choices will behave like Isomap. A far more expressive linear com- 

bination of multiple kernels is presented in [33] where the weight- 

ing is fixed prior to dimension reduction. The work of [14] creates 

an ensemble of different clustering partitions, which may be non- 

Euclidean by nature, allows for more accurate clustering and clas- 

sification. 

In this paper we present a method for learning a chart based on 

a dictionary of dissimilarity measures whilst simultaneously con- 

structing a nonlinear mapping. In [41] a linear combination of dis- 

similarity measures was used in this way and it was shown that 

the quality and interpretability of visualisations improved when 

the chart is learned. This paper builds on this linear model by 

learning a nonlinear combination of dissimilarity measures using 

a universal approximator. In order to show the improvements of 

this nonlinear learning of dissimilarities we use Elastic MDS as in 

[41] to provide a benchmark for our experimental results, however 

our approach generalises to other visualisation algorithms. In or- 

der to demonstrate the impact of our approach we generate visu- 

alisations of four standard datasets with Elastic MDS and Isomap. 

We assess the quality of our results with a visual comparison of 

the mapped latent variables, however as discussed in [52] quanti- 

tative comparison with visual quality metrics are not appropriate 

for non-Euclidean mappings. 

2. The learning task 

The aim of this paper is to accurately estimate the chart of an 

observed manifold without assuming a particular metric, but by 

learning a mixture from a fixed dictionary of dissimilarities. As a 

precursor we build on the work of [41] and therefore focus on 

the case of Elastic MDS [32] to perform a comparative analysis of 

our approach. We assess the performance of the constructed chart 

through visual analysis of an embedding of a dataset. This embed- 

ding need not be Euclidean in terms of Witney’s embedding theo- 

rem [54] as visualisation would only be possible here if the intrin- 

sic dimensionality of a dataset were 3-dimensional or less. Elastic 

MDS generates an embedding of a dataset, X , with N observations 

by constructing a set of latent points, Y ∈ R 

V . As is typical for the 

task of visualisation we fix V = 2 in this paper, however our meth- 

ods generalise trivially to other integer values for V . 

A particular benefit of MDS methods is that X need not be vec- 

torial or even explicitly known, it is only required that the matrix 

of pairwise dissimilarities D x ( i, j ) between observations X i and X j 

is given. The latent points y i corresponding to observation X i are 

learned through gradient descent of the Elastic MDS cost function: 

E = 

∑ 

i, j<i 

( D x (i, j) − D y (i, j) ) 
2 

( D x (i, j) ) 
2 

, (1) 

where D y ( i, j ) denotes the dissimilarity between the latent, visu- 

alised points y i and y j . This measure is typically taken to be the Eu- 

clidean distance. Elastic MDS is distinct from the popular Sammon 

map due to the quadratic term in the denominator of Eq. (1) , mak- 

ing the cost function more sensitive to local distances by stretching 

D x ( i, j ), hence the term elastic. This local focus naturally comes at 

the expense of global preservation. 

For the case that X consists of vectorial observations, x i , it is 

typically assumed that D x ( i, j ) is the Euclidean distance in the 

literature. This measure is only appropriate in the cases where 

the observed manifold is Euclidean. In the Riemannian or non- 

Riemannian manifold cases this distance function will give an in- 

correct approximation of distance. On statistical Riemannian man- 

ifolds the natural distance measure is known to be the Fisher In- 

formation Metric, which is typically approximated [10] using other 

divergence measures. The aim of this paper is to approximate the 

distance between observations: 

D x (i, j) = f 
(
X i , X j 

)
. (2) 

In [41] the function f is approximated using a linear combination 

of dissimilarity measures as a dictionary: 

D x (i, j) = 

L ∑ 

l=1 

αl D 

l (i, j) , (3) 

where αl is the weight corresponding to the l th dissimilarity mea- 

sure, constrained such that αl sums to unity. The dictionary of 

L dissimilarity measures is user specified and the weights were 

learned during the optimisation of the Elastic MDS cost function 

in Eq. (1) . These weights were optimised using gradient descent 

over Eq. (3) with respect to each factor αl in order to find the 

optimal representation achieving a global minima. The dictionary- 

based approach is suited to situations where the natural metric of 

the observed data is unknown. In the regression or classification 

setting it would typically be assumed that the measure generat- 

ing a chart over observations X i is that which achieves the high- 

est predictive performance, however there is no guarantee that 

the measure which charts the manifold will be identified. For the 
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