Pattern Recognition 65 (2017) 82-96

journal homepage: www.elsevier.com/locate/pr

Contents lists available at ScienceDirect

Pattern Recognition

PATTERN
RECOGNITION

Local part chamfer matching for shape-based object detection

Qian Yu®, Hui Wei*™*, Chengzhuan Yang®

@ CrossMark

2 Laboratory of Cognitive Model and Algorithm, School of Computer Science, Fudan University, No. 825 Zhangheng Road, Shanghai 201203, PR China
 Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, No. 825 Zhangheng Road, Shanghai 201203, PR China

ARTICLE INFO ABSTRACT

Keywords:

Chamfer matching

Shape matching

Shape detection
Shape-based object detection

Chamfer matching is one of the elegant and powerful tools for shape-based detection in cluttered images.
However, the chamfer matching methods, including oriented chamfer matching (OCM) and directional chamfer
matching (DCM), tend to produce bad detections due to deformation of object shapes and cluttering in the
scene. To improve detection accuracy of these chamfer matching methods, we propose local part oriented
chamfer matching (LPOCM) and local part directional chamfer matching (LPDCM). First, shape templates and

discriminative contour fragments are learned, and then a shape representation is built using a Markov random
field (MRF). Finally, the template detection in an input image is formulated as an inference in the MRF.
Experimental results for benchmark datasets including ETHZ Shape Classes, INRIA Horses and Weizmann
Horses clearly demonstrate that the proposed LPOCM and LPDCM significantly improve the detection accuracy
of OCM and DCM without sacrificing much time efficiency.

1. Introduction

The classical chamfer matching was originally proposed by Barrow
et al. [2] as a technique for finding an object similar to template in a
cluttered image. A modified version, Hierarchical Chamfer Matching
[4], is performed in an image pyramid. The classical chamfer matching
is a powerful tool in many computer vision tasks, demonstrating speed,
robustness to noise, and invariance to position, scale and rotational
changes. However, it disregards the important orientation of edge
pixels. In response to this limitation, Shotton et al. [24] proposed
oriented chamfer matching (OCM) and Liu et al. [14] proposed
directional chamfer matching (DCM), both of which are modifications
of classical chamfer matching that consider the edge-pixel orientations
to improve detection accuracy.

During the classical chamfer matching, we first extracted the edge
of the input image and obtained the distance transformation map as
shown in Fig. 1(c) where the lighter the pixel, the longer the distance
from the pixel to its nearest edge pixel. Next, we slid the template
across the edge map. For each sliding, we computed distance from each
pixel in template to the closest edge in the input image by using the
distance transformation map and then average the distances for all
pixels in template to calculate the chamfer distance. The bounding-box
of the template at each location is considered a detection. Note that
many detections with high chamfer distances must be discarded
because their high chamfer distances reflect low similarity between
the template and the object. The intersection-over-union ratio (IoU)

between the detection and the ground-truth bounding-box is usually
employed to determine positive and negative detections. Due to
deformation of object shapes and cluttering in the scene, many
detections suffer from unsatisfactory IoUs, bad template localization
and high chamfer distances. Fig. 1 illustrates these drawbacks through
example. Supposing the template scale fixed, we slid the giraffe
template to the red template's location in Fig. 1(d). The template
localization appears decent since the template and the giraffe share a
large degree of correct overlap. However, the giraffe in the input image
presents a large local deformation with respect to the template,
especially in head part. As a result, not only is the DCM distance high,
but also the IoU between the detection (the dashed green rectangle)
and the ground-truth bounding-box (the solid blue rectangle) is
unsatisfactory. Fig. 1(e) shows the best DCM detection. Although this
detection has the lowest DCM distance, the template localization and
detection IoU are poor. Generally, these drawbacks appear in many
DCM (and OCM) detections, which would lower detection accuracy.
To at least partially overcome the above drawbacks, local part DCM
(LPDCM) and local part OCM (LPOCM) are proposed for shape-based
object detection in cluttered images. Our general idea for LPDCM and
LPOCM is to divide the model shape into contour fragments (or shape
parts), and then find candidates in the input image. Finally, the
candidate combination with the correct geometric constraint and low
chamfer distance result in final object detection. As shown in Fig. 1(e),
four contour fragments were correctly located, with low DCM distances
and detection close to the ground truth. This detection is superior to
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Fig. 1. Illustration of the drawbacks of chamfer matching methods. Fig. 1(c) shows a distance transformation map, where the lighter the pixel, the longer the distance from the pixel to
its nearest edge. Fig. 1(d) shows a DCM detection with the high DCM distance especially in the head part, despite decent template localization. Fig. 1(e) shows the best DCM detection
with the lowest DCM distance but bad template localization. Both DCM detections in Fig. 1(d—e) show unsatisfactory IoUs. Fig. 1(f) shows our detection with four contour fragments

correctly located and the detection rectangle close to the ground truth.

DCM detections for two reasons. First, object representation using
separate fragments is much more flexible than using single rigid
template. The geometric constraint between any pair of the separate
fragments is elastic, making dealing with deformation between the
template and the object shape in an input image easier. Second,
separate fragments can be better located than a single global and rigid
template. Note that, although the chamfer matching methods can
provide a relatively rough pixel-to-pixel correspondence, their main
goal is to detect objects with bounding-boxes in cluttered images.
Therefore, final detections are not seriously affected by omitting some
template contours.

Fig. 2 illustrates general processing employed by LPOCM and
LPDCM. The giraffe template was divided into four contour fragments
to form a graph where each node represents a fragment and each edge
represents the geometric constraint between the corresponding two
fragments. The contour fragments are respectively located in the input
image given in Fig. 1(a) using OCM or DCM, and their candidates are
shown in Fig. 2(c). Only candidates that collectively lie within the
correct geometric constraints associated with the overall template and
have low chamfer distances can be assembled into the final giraffe
shape. Hence, the process of the proposed chamfer matching becomes
a combinatorial problem in the graph representation. If the graph in
Fig. 2(b) is considered as a probabilistic graphical model, such as
Markov random field (MRF), the combinatorial problem encountered
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in our work is easily solved by the inference in the MRF. Let the
contour fragments correspond to MRF nodes, where detected candi-
dates are states of the MRF nodes. Then, the solution to the
combinatorial problem can be got by inference in the MRF. As shown
in Fig. 2(d), the detection result is the best combination of candidates
having good geometric constraint and fragment localization.

The remainder of this paper is organized as follows. Related works
are reviewed in Section 2. Basic chamfer matching definitions are then
reviewed in Section 3. In Section 4, local part oriented chamfer
matching (LPOCM) and local part directional chamfer matching
(LPDCM) are proposed, and then shape templates and discriminative
contour fragments are learned. In Section 5, the proposed methods are
tested, and their performance compared with those of OCM and DCM
on the popular benchmarks of ETHZ shape classes, INRIA horses and
Weizmann horses. Finally, this paper is concluded in Section 6.

2. Related work

Chamfer matching was originally proposed by Barrow et al. [2]. To
reduce the computational load, Hierarchical Chamfer Matching was
proposed [4]. Opelt et al. [20] proposed a chamfer matching method
that first learned codebooks of contour fragments, and then used
chamfer distance to match the learnt fragments to edge images.
However, all of these classic methods ignore the orientation of the



Download English Version:

https://daneshyari.com/en/article/4969660

Download Persian Version:

https://daneshyari.com/article/4969660

Daneshyari.com


https://daneshyari.com/en/article/4969660
https://daneshyari.com/article/4969660
https://daneshyari.com

