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a b s t r a c t 

In this paper we put under the same umbrella several well known results and establish several new 

results related to the shape based tools which treat the objects ellipticity issues. We start with a deriva- 

tion of an explicit and closed formula for the computation of the ellipticity measures, from an infinite 

family, introduced recently. The new formula enables a fast computation of such measures, since it does 

not require any optimizing procedure for the computation, as it was the case before. In addition, the es- 

tablished formula enables an easy theoretical manipulation. As a result, we have discovered new shape 

features, as they are: (i) The average shape ellipticity measure , which might be interpreted as an average 

value of the estimated similarities between the shape considered and all the ellipses whose axes length 

ratio belongs to a certain, predefined, interval; (ii) The maximal shape ellipticity measure , which might be 

understood as the maximal possible similarity estimate between a given shape and an ellipses. 

Some of the other results obtained relate strongly to the well-known measures and methods broadly 

used in shape based object analysis tasks. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The shape is an object property which has a big discrimi- 

native capacity since it allows many numerical characterizations. 

One of common approaches is to observe certain shape descrip- 

tors/properties (e.g. convexity, elongation, compactness, sigmodail- 

ity, etc.) cognizable and distinct for a certain application, and then 

develop methods for their numerical evaluation. Such evaluation 

methods herein are called shape measures . There are many shape 

measures developed so far. Just to mention some of them: convex- 

ity [23] , circularity 1 [17,22,33] , linearity [9,26] , tortuosity [10] , but 

there are many more. As it can be seen, there are shape descrip- 

tors with multiple measures developed for their numerical eval- 

uation. This is as expected since there is no shape measure per- 

forming well in all applications. The shape ellipticity, which is the 

main subject of this paper, also has multiple measures defined for 

its computation. Notice that by the shape ellipticity we mean the 

similarity of a given shape to the planar region bounded by an el- 

lipse. It is worth pointing out that the object/shape ellipticity is a 
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1 The circularity property is often called compactness , since the circular disc is 
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recurrent topic in research, due back to 1910 (see [27] ) till the most 

recent days [16] , and many more, e.g. [24,32] , just to mention two 

of them. A lot of work has been dedicated to solve the appear- 

ing, ellipticity associated, problems. Here we mention [13,14,19,21] , 

from the areas of the astronomy, astrophysics, nano-particles anal- 

ysis, and traffic analysis. 

Apart from the shape measures mentioned, there are generic 

shape measures which are targeted to satisfy some of desirable 

properties (e.g. the invariance with respect to a class of transfor- 

mations), rather than to evaluate some of shape properties. Among 

them are: Fourier invariants [29] , different kind of moment invari- 

ants [5,11,30,31] , integral invariants [12] , shape-illumination invari- 

ants [2] , and so on. The power of generic shape invariants comes 

from the fact that the number of such invariants is not upper 

bounded. A drawback is that their behavior is not well explained 

and cannot be predicted. 

There another approaches, as well, to the shape analysis prob- 

lems. Here in we mention statistics based ones (the topic usually 

named the statistical shape analysis . An idea [4] was to learn the 

space of typical shapes, from examples of a class of shapes (i.e. 

training data). This can then be used to analyze new shapes, e.g. 

measure the probability the new shape is a member of the shape 

class, or transform the new shape by projecting it into the learnt 

shape space. A statistical appearance model, that uses a proba- 

bilistic correspondence (rather than one-to-one correspondences, 
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for example) has been considered in [15] . A learning statistical 

shape model from image data, has been proposed in [8] . The model 

uses Kendal shape space, represents shapes as point set equiva- 

lence classes, and treats each shape point set as a random vari- 

able. A method for constructing statistical representations of en- 

sembles of similar shapes is described in [3] . The method is based 

on an optimal distribution of a large set of surface point corre- 

spondences (the method uses surface point samples rather than 

any specific surface parameterization). Current (a generalized dis- 

tribution, coming from geometric measure theory) based method 

for computing an optimal deformation between surfaces embed- 

ded in 3D space is given in [28] . The method leads to a diffeomor- 

phic matching algorithm, with an immediate application in statis- 

tical inference of shapes, via momentum representation of flow. 

As it could be expected, the measures which do relate to certain 

shape property have a well understood and predictable behavior, 

but their number is limited. This further causes a limited discrim- 

inative power of such measures. An attempt to balance between 

these two issues has been made in [1] , where a tuning parameter 

ρ ∈ (0, 1] was involved to design an infinite family of ellipticity 

measures E ρ (S) . All measures, from the family E ρ (S) , with 0 < ρ
≤ 1, are invariant with respect to translation, rotation, and scaling 

transformations and range over the interval (0, 1]. For a fixed ρ
∈ (0, 1], the equality E ρ (S) = 1 is true if and only if the shape S 

is the ellipse whose the axes length ratio is ρ . Thus, the ellipticity 

measures E ρ (S) distinguish between ellipses whose axes length ra- 

tios are different – i.e. such ellipses are considered to be different 

in shape, as well. 

The results of [1] are actually the starting point for the work of 

this paper. We start with the derivation of an explicit and closed 

formula for E ρ (S) . 2 This enables a fast computation and more de- 

tailed theoretical observation of the properties of the measures 

from the family. Based on these observations we discover new 

shape measures/features, not discussed before in the literature: 

• Average ellipticity, E a v g (S) , is defined as the average score of the 

measured ellipticities E ρ (S) , while ρ varies through an interval 

( a, b ], with 0 < a < b ≤ 1. 
• Maximum ellipticity , E max (S) , is defined as the maximal value 

among all the ellipticity measures E ρ (S) , with 0 < ρ ≤ 1. For- 

mally: E max (S) = max 
ρ∈ (0 , 1] 

E ρ (S) . 3 

Some of the obtained results strongly relate to the well-known 

results that are already in common use in image processing and 

computer vision tasks. This will be discussed in more details later 

on. Several illustrative examples are provided, in order to support 

a better understanding of the theoretical observations made in this 

paper. 

The paper is organized as it follows: Section 2 gives the basic 

definitions and denotations. Explicit formulas for the computation 

of the E ρ (S) , E a v g (S) , and E max (S) , measures and related comments 

are Section 3 . Concluding remarks are in Section 4 . 

2. Definitions and denotation 

We list shortly the basic terms and denotations, used in the rest 

of the paper. 

• E ( a, b ) denotes an isothetic ellipse whose axis lengths are a and 

b , and whose centroid coincides with the origin. Formally, 

E(a, b) = 

{
(x, y ) | x 2 

a 2 
+ 

y 2 

b 2 
≤ 1 

}
. (1) 

2 The formula for the computation of E ρ (S) , derived in [1] , involves an optimizing 

procedure and is suitable for the numerical computation only. 
3 It may be interesting to point out that E max (S) is invariant with respect to affine 

transformations, while the measures from the family E ρ (S) are not. 

Just as a short reminder, the area of E ( a, b ) is π · a · b . 

Remark. Instead of the term ‘ellipse’, in mathematics assumed 

to be a line (not a region, as in (1) ), more correct would be to 

use the term ‘elliptical disc’, for the region E ( a, b ) in (1) . How- 

ever, we will proceed to use the term ‘ellipse’ because it has 

been commonly used in literature related to the shape anal- 

ysis. Similarly, we will use the term ‘circle’ for planar region 

bounded by the circular line, instead of, mathematically more 

correct, term ‘circular disc’. 
• Since the shape does not change under scaling transformations, 

without loss of generality, we will assume that all appearing 

shapes have the area equal to 1. 
• E ( ρ) will denote an isothetic ellipse, having the unit area and 

the axes length ratio equal to ρ , and placed such that the cen- 

troid of E ( ρ) coincides with the origin - i.e. 

E(ρ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(x, y ) | x 2 (√ 

ρ
π

)2 
+ 

y 2 (
1 √ 

π ·ρ

)2 
≤ 1 

⎫ ⎪ ⎬ 

⎪ ⎭ 

= 

{
(x, y ) | x 2 

ρ
+ ρ · y 2 ≤ 1 

π

}
. (2) 

In other words E(ρ) = E(a, b) , with a = 

√ 

ρ/π and b = 

1 / 
√ 

π · ρ. 

• Two shapes are said to be equal if their set differences have the 

area equal to zero. This is not a restriction in practical applica- 

tions – e.g. a closed region { (x, y ) | x 2 + y 2 ≤ 1 } and the open 

one { (x, y ) | x 2 + y 2 < 1 } are of the same shape. 
• S ( ω) will denote the shape S rotated around its centroid for an 

angle ω. Notice that the shape centroid ( x c , y c ), as usually, is 

defined as (
x c , y c 

)
= 

(∫ ∫ 
S x dx dy ∫ ∫ 

S d x d y 
, 

∫ ∫ 
S y dx dy ∫ ∫ 

S d x d y 

)
. (3) 

• The first two Hu moment invariants [11] will be used inten- 

sively in our derivations. They will be denoted by H 1 (S) and 

H 2 (S) respectively, and are defined as: 

H 1 (S) = m 2 , 0 (S) + m 0 , 2 (S) and 

H 2 (S) = (m 2 , 0 (S) − m 0 , 2 (S)) 2 + 4 m 1 , 1 (S) 2 . (4) 

The quantities m p, q ( S ) are so called normalized moments and 

are defined as 

m p,q (S) = 

∫ ∫ 
S 
( x − x c ) 

p 
( y − y c ) 

q d x d y, (5) 

for the shapes having the area equal to 1. 

3. Family of ellipticity measures, maximal, and average 

ellipticity 

A family of ellipticity measures E ρ (S) , dependent on a param- 

eter ρ ∈ (0, 1], has been introduced recently in [1] . The quantity 

E ρ (S) evaluates the similarity between the considered shape S and 

the ellipse E ( ρ) (whose axes length ratio is ρ - see (2) ), and is in- 

variant w.r.t. translation, rotation and scaling transformations. Also, 

E ρ (S) = 1 if and only if S = E(ρ) . 

The ellipticity measures E ρ (S) are shown to be very efficient 

in a galaxy classification task [1] . The elliptical and spiral galax- 

ies listed in the Nearby Galaxy Catalog ( NGC ) [7] , were used as the 

data set (see Fig. 1 for some examples). This classification problem 

is a difficult task. Previous the best accuracy was 95.1% [18] . The 

100% classification rate was achieved by employing a number of 

E ρ (S) measures. A simple k -NN classifier was used. In addition, to 

reduce limits (in the classification efficiency), caused by a choice 

of the threshold method selected, two shapes were associated to 
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