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A B S T R A C T

We consider an approach to ensemble clustering based on weighted co-association matrices, where the weights
are determined with some evaluation functions. Using a latent variable model of clustering ensemble, it is
proved that, under certain assumptions, the clustering quality is improved with an increase in the ensemble size
and the expectation of evaluation function. Analytical dependencies between the ensemble size and quality
estimates are derived. Theoretical results are supported with numerical examples using Monte-Carlo modeling
and segmentation of a real hyperspectral image under presence of noise channels.

1. Introduction

Cluster analysis is one of the important problems in data mining.
Suppose we are given a data set A a a= { ,…, }N1 consisting of N objects.
The description of this set can have two major forms: the table of
feature observations, and the pairwise distance matrix whose elements
are distances between object pairs. We consider the case when the
information about the objects is presented as a data table xX = ( )i m, ,
where x X a= ( )i m m i, is a value of feature X ∈m for object ai
(m d∈ {1,…, }, i N∈ {1,…, }), d is feature space dimensionality.

It is required to find a partition P C C= { ,…, }K1 of the set A on a
relatively small number of homogeneous subsets (groups, clusters). A
certain function dependent on the scatter of observations within groups
and the distances between clusters is usually understood as a criterion
of homogeneity. The number of clusters K could be chosen beforehand
or not defined (in the latter case it is necessary to find the optimal
number of groups). In the given work, we assume that the number of
clusters is fixed.

There exist a large number of clustering methods. These methods
are characterized by different ways of understanding the notion of
homogeneity, diverse procedures for searching the optimum partition
and various problem-dependent restrictions (see an overview of
existing methods in [1–3]). Since the brute-force methods are im-
practical, approximate iterative algorithms are usually used for finding
the optimal clustering partition. In each step, these algorithms modify
current partition in order to locally improve the clustering quality. This

process is guided by certain user-specified parameters.
In last decades, an approach based on the collective decision

making is actively developing in cluster analysis [4,5]. The interest to
this research area has particularly grown in the light of achievements in
the ensemble methods for classifying and forecasting [6,7].

It is known that clustering algorithms are nor universal; each one
may have its own specific implementation area: some algorithms work
better in situations when clusters are described by spherical regions;
other algorithms are intended for strip-like clusters, etc. When data has
complex structure, the reasonable strategy is using not a single
algorithm, but a collection of different algorithms “compensating” each
other's weaknesses [8]. The collective approach allows one to increase
the quality of clustering in the situations when it is not clear, which of
the algorithm parameters are most appropriate for resolving a parti-
cular problem. In this case, one may consider several partition variants
(obtained for different parameters) and then make a final conclusion on
their basis.

A number of approaches for finding ensemble clustering decision
were suggested in the literature. In the consensus-style procedures, it is
required to reach the optimal degree of consistency with the results of
individual algorithms. Let us consider L variants P P,…, L1 of partition-
ing defined on the set A. For the consensus partition P*, we have

∑P w φ P P* = arg max ( , ),
P l

L

l l
P∈ =1
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where P is the set of all partitions of A, φ is a measure of similarity
between two partitions, w ≥ 0l is a “weight” of lth partition, w∑ = 1l l .
The weight wl, assigned to a clustering variant, allows one taking into
account its “importance”. The weight can depend on the estimation of
partition quality with some cluster validity measure. Approximate
iterative procedures are usually used for searching the optimal
consensus partition.

Evidence accumulation approach [9] is based on the notion of
averaged co-association matrix. The matrix defines how often object
pairs fall into different (or the same) clusters over all clustering
variants. Let Hl be the co-association matrix for lth variant of
partitioning, where H h i j= ( ( , ))l l ; its element h i j( , ) = 0l when objects
ai and aj (i j≠ ) join the same group in lth variant; otherwise
h i j( , ) = 1l . Averaged co-association matrix obtained over all variants
of partitioning is defined as follows:

∑ w HH = .
l

l l

The elements of averaged matrix can be considered as the analogs of
pairwise distances between objects: the higher the value of an element,
the more frequently the pair was assigned to different clusters; i.e. the
more dissimilar are the objects in this sense. To obtain the final
partition, one can apply algorithms which make use of pairwise
distance matrices, such as hierarchical agglomerative algorithm or
spectral clustering.

Besides the above mentioned approaches for ensemble clustering,
there exist other methods, such as analysis of distribution model
mixtures, graph-theoretic algorithms, bootstrap samples analysis
[4,5,10]. Consensus clustering approach was theoretically substan-
tiated in [11] for the case of equal algorithms' weights. Applying the
central limit theorem, the authors proved that an increase in the
ensemble size decreases the probability of disagreement between
consensus partition and the “true” partition (under the assumption
that each base algorithm has better quality than a trivial algorithm of
partitioning at random).

In real clustering problems, the ensemble size is always finite and
the assumptions lying at the basis of limit theorems can be violated.
Nevertheless, it is desirable to insure the best achievable quality of the
ensemble. To this objective, various methods based on the evaluation of
the contribution made by different variants into the overall solution
were suggested. In these methods, partitions with higher grade receive
greater weights in the final decision. The attributing of weights can be
performed in different ways [12,13].

In ensemble selection methods, the resulting partition is obtained
using a subset of base partitions. The candidate partitions are ranked
according to some criterion; the given number of best variants are
selected in the ensemble. This procedure is equivalent to attributing
zero weights wl to low-grade partitions and constant weights to the
selected ones. Experiments show that the optimal performance of the
ensemble is reached then the selection procedure takes into account
both quality and diversity of base partitions [14,15]. Here the partition
quality is determined with the information on cluster labels assigned to
data objects. A different formulation [16] of quality of variants under
selection relies on cluster validity indices specifying compactness-
remoteness characteristics of clusters in the feature space (see, e.g.,
[17] for an overview of existing indices). The weights can be attributed
with a collection of different cluster validity indices [18].

Another way of assigning weights revolves around the notion of
refined co-association matrix with elements in the continuous interval.
Each lth variant of clustering determines its own refined co-association
matrix; the ensemble partition is found using the equally averaged
matrix. In probability accumulation method [19], a weight of the pair
of objects in the same cluster depends on its size. The authors of [20]
assign weights according to the distances from each object in the pair to
cluster centroids. A weight characterizing similarity between two
objects can be evaluated taking into account their neighboring objects

[21] or a path connected them [22].
It may be noticed that a procedure of assigning weights makes use

of two levels of information: local (data point) level and global (cluster)
level. At the local level, the properties of clustering ensemble in relation
to an object pair are taken into account. At the global level, general
characteristics of clusters in the partition (we call them evaluation
functions) make a contribution to the weight.

In the current work, we follow general framework of ensemble
clustering based on weighted co-association matrices. There are two
schemes one could use to design base elements of the ensemble. First of
all, a single algorithm may create data partitions by varying its
parameters (“homogenous ensemble”). Another scheme involves a
number of completely different clustering algorithms, each one operat-
ing on its own domain of parameters (“heterogeneous ensemble”). In
our earlier work [23], a probabilistic model of clustering ensemble was
suggested under the first scheme. The model was modified in [24] for
the analysis of ensembles organized in accordance with the second
scheme. It was shown that the largest weights should be attributed to
most “stable” algorithms. However, both works consider only varia-
tions of cluster labels and disregard potentially useful information on
other characteristics of base partitions (cluster validity indices, diver-
sity measures, etc).

The aim of this paper is to theoretically investigate the model of
clustering ensemble based on co-association matrices with elements
dependent on local and global levels of information and weights
assigned proportionally to arbitrary evaluation function. We consider
a single algorithm that constructs base partitions using parameters
taken at random. In particular, our interest is in studying the
convergence properties of the solutions under increasing ensemble
size. Is growing ensemble size really causes the improvement of
clustering quality and under which conditions? What is the benefit of
using weighted voting against simple averaging with equal weights?
Another problem is how the characteristics (i.e., evaluation functions)
of partial clusterings influence the quality of the overall decision.

The rest of the paper is organized as follows. In the second section
we describe the scheme of clustering ensemble based on weighted co-
association matrices. The third section describes the model of cluster-
ing ensemble. Using the concept of ensemble margin, we find an upper
bound for misclassification error in attributing pairs of objects to
clusters. Applying the obtained bound, we formulate some theoretical
properties of the ensemble related to its convergence. In the forth
section we consider the results of numerical experiments with the
model aimed at its practical confirmation. Using validity indices as
evaluation functions, we present the results of experiments using
Monte-Carlo simulations and clustering of a real hyperspectral image.
The conclusion summarizes the work.

2. Clustering ensemble

Let us consider the following algorithmic construction. We shall
suppose that a clustering algorithm μ is enabled to work a number of
times with different parameter settings (in general, under different
working conditions such as initial centroids coordinates, subsets of
features and number of clusters). In each lth run, it generates a
clustering variant composed of Kl groups, l L∈ {1,…, }, where L is total
number of runs. Each variant is appraised using some evaluation
function γ; thus a collection of values γ1, …,γL is obtained. It is
allowable to suppose that the values are appropriately standardized so
that (a) γ l L0 < ≤ 1, ∈ {1,…, }l , and (b) the better are the found
variants according to some criterion, the larger are the function values.

Because the numberings of clusters do not matter, it is convenient
to define an equivalence relation, i.e. to determine whether the
algorithm μ assigns each pair of objects to the same cluster or to the
separate clusters. For a pair of different objects ai and aj, we define the
value h i j( , ),
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