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a b s t r a c t

Graph-based semi-supervised learning (SSL), which performs well in hyperspectral image classification
with a small amount of labeled samples, has drawn a lot of attention in the past few years. The key step
of graph-based SSL is to construct a good graph to represent original data structures. Among the existing
graph construction methods, sparse representation (SR) based methods have shown impressive per-
formance on graph-based SSL. However, most SR based methods fail to take into consideration the class
structure of data. In SSL, we can obtain a probabilistic class structure, which implies the probabilistic
relationship between each sample and each class, of the whole data by utilizing a small amount of
labeled samples. Such class structure information can help SR model to yield a more discriminative
coefficients, which motivates us to exploit this class structure information in order to learn a dis-
criminative graph. In this paper, we present a discriminative graph construction method called prob-
abilistic class structure regularized sparse representation (PCSSR) approach, by incorporating the class
structure information into the SR model, PCSSR can learn a discriminative graph from the data. A class
structure regularization is developed to make use of the probabilistic class structure, and therefore to
improve the discriminability of the graph. We formulate our problem as a constrained sparsity mini-
mization problem and solve it by the alternating direction method with adaptive penalty (ADMAP). The
experimental results on Hyperion and AVIRIS hyperspectral data show that our method outperforms
state of the art.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Hyperspectral image (HSI) data contains high-resolution spec-
tral information on land covers, which is attractive for dis-
criminating the subtle differences between classes with similar
spectral signatures. Therefore, it has been widely applied to clas-
sify land covers [1–4]. However, HSI classification often faces the
issue of limited number of labeled data, which are often costly,
effortful and time-consuming to label. On the other hand, we can
obtain a large number of unlabeled data effortlessly. Semi-su-
pervised learning (SSL), which can utilize both small amount of
labeled instances and abundant yet unlabeled samples, has re-
cently been proposed to deal with this issue [5]. Several SSL
methods have been applied to the classification of remote sensing

and hyperspectral image, which can be divided into three classes:
(1) Generative models such as expectation-maximization algo-
rithms with finite-mixture models, which have been applied for
remote sensing image classification [6]; (2) Low-density separa-
tion algorithms which maximize the margin for labeled and un-
labeled data simultaneously, such as transductive SVM, which
have been successfully used in HSI classification [7]; (3) Graph-
based methods [8–10]. This paper focuses on graph-based SSL
methods, which have drawn a lot of attention because they have
elegant mathematical formulation and can obtain a close-form
solution [5,11–13,8–10].

The key step of graph-based SSL is to construct a good graph to
represent original data structures. Graph-based SSL methods first
construct a graph where nodes are all the data samples, and the
edge weights denote the similarity between pairwise data points.
Then the label information of the labeled data can be effectively
propagated to the unlabeled data through the graph. These
methods mostly characterize the propagation process via a graph
laplacian regularizer. In spite of many different forms used in
graph-based SSL approaches, most regularizers try to comply with
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the so-called cluster assumption [14], which supposes that the
data on the same manifold or structure are likely to have the same
class. In most methods, the underlying manifold is approxima-
tively modeled by the construction of a graph from both labeled
and unlabeled samples. Therefore, constructing a good graph to
represent underlying data manifold is critical for graph-based SSL
approaches [12,15,16].

To learn an effective graph from data points, many techniques
have been proposed for graph-based SSL. Traditional methods of-
ten utilize k-nearest neighbors (kNN) or ε-ball neighborhood to
determine the graph adjacency structure, and then employ kinds
of weight calculation methods, e.g., gaussian kernel (GK) function
[12,5,17,11,18,8] and nonnegative local linear reconstruction (LLR)
[13] coefficients to measure the similarity among data samples. Ma
et al. [10] propose a new family of graph weights based on Local
Manifold Learning (LML) for HSI classification. The shared pro-
blems of these graph construction methods are that they all have
some fixed parameters which required tuning manually, and the
graph structures are also very sensitive to the parameter variance
and data noise.

Recently, benefiting from the development of compressed
sensing [19,20], several sparse representation (SR) based graphs
have been proposed for graph-based SSL [21–23,9]. For example,
both Cheng et al. [21] and Yan et al. [22] propose a ℓ1-graph
structure based on SR.The latent philosophy is that each sample
can be encoded as a sparse linear combination of the remaining
samples via solving an ℓ1 optimization problem, and the sparse
coefficients could represent the similarity between two samples.
By enforcing the representation coefficients to be nonnegative so
that it can be directly applied as graph weights, He et al. [23]
provide a sparse probability graph (SPG). In order to handle with
noise or corrupted data, [24] proposes a modified version of SR,
which can correctly identify the underlying subspaces even with
noisy data. Besides, Gu and Feng [9] also apply SR graph to HSI
classification. In contrast to aforementioned graphs (i.e., GK graph,
LLR graph, LLE graph), SR-based graphs can obtain the adjacency
relationship and the weights automatically and simultaneously,
and has natural discriminating power. Many SR variants have also
been developed. Graph regularized sparse representation (GRSR)
[25–27] considers the local manifold structure of the data, and the
obtained sparse representations vary smoothly along the geo-
desics of the data manifold. Zhuang et al. [28,29] propose a non-
negative low-rank and sparse (NNLRS) model, by combining SR
and low-rank representation (LRR) [30,31]. The so obtained graph
can capture both the global cluster structure and local linear
structure of the data.

As discussed above, the SR based graphs have shown im-
pressive performance on semi-supervised classification tasks.
However, most of those SR-based graph construction methods fail
to take the class structure of the data into account. In SSL, we can
obtain a probabilistic class structure, which implies the probabil-
istic relationship between each sample and each class, of the
whole data by utilizing partial label information. Such class
structure information can help SR model to yield a more dis-
criminative coefficients, e.g., if two samples have different class
distribution, which means they belong to the same class with low
probability, we would like to assign small weight to them. Thus it
is beneficial for exploiting this class structure information in order
to learn a discriminative graph.

Motivated by above insights, in this paper, we present a dis-
criminative graph construction method called probabilistic class
structure regularized sparse representation (PCSSR) approach for
graph-based SSL. Specifically, a class structure regularizer is de-
veloped to incorporate the probabilistic class structure informa-
tion into SR model. This regularizer can enable us to learn a dis-
criminative graph, which benefits the graph-based semi-

supervised classification task. The PCSSR objective function can be
solved by the recently developed alternating direction with
adaptive penalty (ADMAP) algorithm [32]. The experimental re-
sults on six hyperspectral data sets show that our PCSSR method
outperforms the state of the art algorithms in graph construction
in most cases.

Summarily, the main contributions of this paper are as follows.

(1) We provide a method to estimate the probabilistic class
structure, which implies the probabilistic relationship be-
tween each data point and each class, of the whole data. Such
prior information can regularize the graph construction ap-
proach and result in a more suitable graph for classification.

(2) We propose a PCSSR graph construction approach, which in-
corporates the class structure information of the data into the
formulation of SR and thus enhances the discriminability of
graph.

We organize the rest of the paper as follows: In Section 2, we
will introduce related work, including the work related to the
graph-based SSL algorithm, the work related to some existing
graph construction methods. In Section 3 we will detail the con-
struction of PCSSR graph. Experimental results and analysis will be
discussed in Section 4. We will conclude our work and propose
future work in Section 5.

2. Related works

In this section, we first introduce a representative graph-based
SSL method: label propagation (LP) algorithm, and then discuss
some existing graph construction methods.

2.1. Label propagation algorithm

In this part, we will briefly review the LP algorithm proposed in
[5,17], and apply our PCSSR graph to it in this paper. LP algorithm
aims to propagate labels from limited labeled samples to abundant
unlabeled samples. Given a little number of labeled samples, the
basic idea of LP method is to propagate the labels according to
affinity relationship among samples. It assumes that similar sam-
ples should have similar labels. The solution of the algorithm is
first to compute the similarities among all the data samples, and
then formulate the label propagation problem as a harmonic en-
ergy minimization problem [5], which has a closed-form solution.
We summarize the algorithm as follows.

Given the labeled samples = [ … ]X x x x, , ,l l1 2 and the unlabeled
samples = [ … ]+ + +X x x x, , ,u l l l u1 2 , they have c classes denoted as

= [ … ]C c1, 2, , . Both the labeled and unlabeled samples
= [ ]X X X,l u produce a connected graph = ( )G V E, , where the

nodes V corresponding to the = +n l u samples, and the edges E
are represented by a similarity weight matrix ∈ ×RW n n. Let

= [ ] ∈ ×RY Y Y,l u
T n c be a label matrix, where =Y 1ij if the label of

sample Xi belongs to class j for ∈j C and =Y 0ij otherwise. The
goal of label propagation is to learn a prediction function

= [ ] ∈ ×RF F F,l u
T n c by minimizing following harmonic energy

function, meanwhile it constrains the prediction labels of labeled
samples to be equal to true labels:

∑ − = ( ) =
( )∈ =

×
Tr s tW f f F L F F Ymin

1
2

.
1R i j

N

ij i j
T

l l
F

W
, 1

2
n c

where ∈ ×Rfi
c1 and ∈ ×Rf j

c1 are predicted label vector of data
sample xi and xj, = −L D WW is the graph Laplacian matrix, in
which D is the diagonal degree matrix with = ∑D Wii j ij.

Partition the matrix LW into four blocks based on the number
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