
Robust semi-supervised least squares classification by implicit
constraints

Jesse H. Krijthe a,b,n, Marco Loog a,c

a Pattern Recognition Laboratory, Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands
b Department of Molecular Epidemiology, Leiden University Medical Center, Einthovenweg 20, 2333ZC Leiden, The Netherlands
c Image Group, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

a r t i c l e i n f o

Article history:
Received 14 December 2015
Received in revised form
12 July 2016
Accepted 18 September 2016
Available online 20 September 2016

Keywords:
Semi-supervised learning
Robust
Least squares classification

a b s t r a c t

We introduce the implicitly constrained least squares (ICLS) classifier, a novel semi-supervised version of
the least squares classifier. This classifier minimizes the squared loss on the labeled data among the set of
parameters implied by all possible labelings of the unlabeled data. Unlike other discriminative semi-
supervised methods, this approach does not introduce explicit additional assumptions into the objective
function, but leverages implicit assumptions already present in the choice of the supervised least squares
classifier. This method can be formulated as a quadratic programming problem and its solution can be
found using a simple gradient descent procedure. We prove that, in a limited 1-dimensional setting, this
approach never leads to performance worse than the supervised classifier. Experimental results show
that also in the general multidimensional case performance improvements can be expected, both in
terms of the squared loss that is intrinsic to the classifier and in terms of the expected classification error.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the problem of semi-supervised learning of binary
classification functions. As in the supervised paradigm, the goal in
semi-supervised learning is to construct a classification rule that
maps objects in some input space to a target outcome, such that
future objects map to correct target outcomes as well as possible.
In the supervised paradigm this mapping is learned using a set of L
training objects and their corresponding outputs. In the semi-su-
pervised scenario we are given an additional and often large set of
U unlabeled objects. The challenge of semi-supervised learning is
to incorporate this additional information to improve the classi-
fication rule.

The goal of this work is to build a semi-supervised version of
the least squares classifier that is robust against deterioration in
performance meaning that, at least in expectation, its performance
is not worse than supervised least squares classification. While it
may seem like an obvious requirement for any semi-supervised
method, current approaches to semi-supervised learning do not
have this property. In fact, performance can significantly degrade
as more unlabeled data is added, as has been shown in [1,2],
among others. This makes it difficult to apply these methods in

practice, especially when there is a small amount of labeled data to
identify possible reduction in performance. A useful property of
any semi-supervised learning procedure would therefore be that
its performance does not degrade as we add more unlabeled data.
Additionally, many semi-supervised learning procedures are for-
mulated as hard-to-optimize, non-convex objective functions. A
more satisfactory state of affairs for semi-supervised classification
would therefore be methods that are easier to train and that, on
average, do not lead to worse classification performance than their
supervised alternatives.

We present a novel approach to semi-supervised learning for
the least squares classifier that we will refer to as implicitly con-
strained least squares classification (ICLS). ICLS leverages implicit
assumptions present in the supervised least squares classifier to
construct a semi-supervised version. This is done by minimizing
the supervised loss function subject to the constraint that the
solution has to correspond to the solution of the least squares
classifier for some labeling of the unlabeled objects.

As this work is specifically concerned with least squares clas-
sification, we note several reasons why this is a particularly in-
teresting classifier to study: first of all, the least squares classifier is
a discriminative classifier. Some have claimed semi-supervised
learning without additional assumptions is impossible for dis-
criminative classifiers [3,4]. Our results show that this does not
strictly hold.

Secondly, the closed-form solution for the supervised least
squares classifier allows us to study its theoretical properties. In
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particular, in the univariate setting without intercept and assum-
ing perfect knowledge of PX, the distribution of the feature, we
show that this procedure never gives worse performance in terms
of the squared loss criterion compared to the supervised least
squares classifier. Moreover, using the closed-form solution we can
rewrite our semi-supervised approach as a quadratic program-
ming problem, which can be solved through a simple gradient
descent with boundary constraints.

Lastly, least squares classification is a useful and adaptable
classification technique allowing for straightforward use of, for
instance, regularization, sparsity penalties or kernelization [5–9].
Using these formulations, it has been shown to be competitive
with state-of-the-art methods based on loss functions other than
the squared loss [7] as well as computationally efficient on large
datasets [10].

This work builds on [11] and offers a more complete exposi-
tion: we show ICLS can be formulated as a quadratic programming
problem, we extend the experimental results section by including
an alternative semi-supervised procedure, adding additional da-
tasets and discussing the ‘peaking’ phenomenon. Moreover, we
extend the theoretical result with conditions when one is likely to
see improvement of the proposed approach over the supervised
classifier.

The main contributions of this paper are

� A novel convex formulation for robust semi-supervised learning
using squared loss (Eq. (5)).

� A proof that this procedure never reduces performance in terms
of the squared loss for the 1-dimensional case without intercept
(Theorem 1).

� An empirical evaluation of the properties of this classifier
(Section 6).

The rest of this paper is organized as follows. Section 2 gives an
overview of related work on semi-supervised learning. Section 3
gives a high level overview of the method while Section 4 in-
troduces our semi-supervised version of the least squares classifier
in more detail. We then derive a quadratic programming for-
mulation and present a simple way to solve this problem through
bounded gradient descent. Section 5 contains a proof of the im-
provement of the ICLS classifier over the supervised alternative.
This proof is specific to classification with a single feature, without
including an intercept in the model. For the multivariate case, we
present an empirical evaluation of the proposed approach on
benchmark datasets in Section 6 to study its properties. The final
sections discuss the results and conclude.

2. Related work

Many diverse approaches to semi-supervised learning have
been proposed [12,13]. While semi-supervised techniques have
shown promise in some applications, such as document classifi-
cation [14], peptide identification [15] and cancer recurrence
prediction [16], it has also been observed that these techniques
may give performance worse than their supervised counterparts.
See for instance [1,2], for an analysis of this problem, and [17] for a
practical example in part-of-speech tagging. In these cases, dis-
regarding the unlabeled data would lead to better performance.

Some [18,19] have argued that agnostic semi-supervised
learning, which [18] defines as semi-supervised learning that is at
least no worse than supervised learning, can be achieved by cross-
validation on the limited labeled data. Agnostic semi-supervised
learning follows if we only use semi-supervised methods when
their estimated cross-validation error is significantly lower than
those of the supervised alternatives. As the results of [18] indicate,

this criterion may be too conservative: given the small amount of
labeled data, a semi-supervised method will only be preferred if
the difference in performance is very large. If the difference is less
distinct, the supervised learner will always be preferred and we
potentially ignore useful information from the unlabeled objects.
Moreover, this cross-validation approach can be computationally
demanding.

2.1. Self-learning

A simple approach to semi-supervised learning is offered by
the self-learning procedure [20] also known as Yarowsky's algo-
rithm [21,22] or retagging [17]. Taking any classifier, we first es-
timate its parameters on only the labeled data. Using this trained
classifier we label the unlabeled objects and add them, or poten-
tially only those we are most confident about, with their predicted
labels to the labeled training set. The classifier parameters are re-
estimated using these labeled objects to get a new classifier. One
iteratively applies this procedure until the predicted labels of the
unlabeled data no longer change.

One of the advantages of this procedure is that it can be applied
to any supervised classifier. It has also shown practical success in
some application domains, particularly document classification
[14,22]. Unfortunately, the process of self-training can also lead to
severely decreased performance, compared to the supervised so-
lution [1,2]. One can imagine that once an object is incorrectly
labeled and added to the training set, its incorrect label may be
reinforced, leading the solution away from the optimum. Self-
learning is closely related to expectation maximization (EM) based
approaches [21]. Indeed, expectation maximization suffers from
the same issues as self-learning [13]. In Section 6 we compare the
proposed approach to self-learning for the least squares classifier.

2.2. Additional assumptions

Some semi-supervised methods leverage the unlabeled data by
introducing assumptions that link properties of the features alone
to properties of the label of an object given its features. Commonly
used assumptions are the smoothness assumption: objects that
are close in the feature space likely share the same label; the
cluster assumption: objects in the same cluster share a label; and
the low density assumption enforcing that the decision boundary
should be in a region of low data density.

The low-density assumption is used in entropy regularization
[23] as well as for support vector classification in the transductive
support vector machine (TSVM) [24] and closely related semi-su-
pervised SVM (S3VM) [25,26]. In these approaches an additional
term is added to the objective function to push the decision
boundary away from regions of high density. Several approaches
have been put forth to minimize the resulting non-convex objec-
tive function, such as the convex concave procedure [27] and dif-
ference convex programming [26,28].

In all these approaches to semi-supervised learning, a parameter
controls the importance of the unlabeled points. When the para-
meter is correctly set, it is clear, as [19] claims, that TSVM is always
no worse than supervised SVM. It is, however, non-trivial to choose
this parameter, given that semi-supervised learning is most inter-
esting in cases where we have limited labeled objects, making a
choice using cross-validation very unstable. In practice, therefore,
TSVM can also lead to performance worse than the supervised sup-
port vector machine, as well will also see in Section 6.3.

2.3. Safe semi-supervised learning

Refs. [29,30] attempt to guard against the possibility of dete-
rioration in performance by not introducing additional assumptions,
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