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a b s t r a c t

Diffusion MRI (dMRI) provides rich information on the white matter of the human brain, enabling insight
into neurological disease, normal aging, and neuroplasticity. We present BundleMAP, an approach to
extracting features from dMRI data that can be used for supervised classification, regression, and hy-
pothesis testing. Our features are based on aggregating measurements along nerve fiber bundles, en-
abling visualization and anatomical interpretation. The main idea behind BundleMAP is to use the
ISOMAP manifold learning technique to jointly parametrize nerve fiber bundles. We combine this idea
with mechanisms for outlier removal and feature selection to obtain a practical machine learning pi-
peline. We demonstrate that it increases accuracy of disease detection and estimation of disease activity,
and that it improves the power of statistical tests.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Even though nerve fibers are much too small to be observed
with Magnetic Resonance Imaging (MRI) directly, their coherent
organization hinders and restricts the natural Brownian heat
motion of water in a characteristic manner. This can be probed at a
macroscopic level by diffusion MRI (dMRI), making it a unique
mechanism for studying white matter organization of the human
brain in vivo [1]. However, dMRI sequences involve a large number
of whole-brain images, taken with different measurement para-
meters, and biologically relevant quantities can only be derived by
analyzing the relationship between those images.

This makes it challenging to leverage the rich information that
diffusion MRI provides on white matter disease for the detection of
disease or assessment of disease severity using supervised ma-
chine learning [2–5]. In particular, it is desirable to derive features
that are not only effective, but that should also be interpretable,

indicating which anatomical structures are particularly relevant,
and how they might be affected by a given disease.

We present a practical system that provides mechanisms for
supervised classification, regression, and hypothesis testing of
dMRI data based on features that we derive from diffusion para-
meters and anatomical structures whose interpretation is familiar
to neurologists. The name of our method, BundleMAP, reflects the
fact that it combines manifold learning using the ISOMAP method
[6] with registration and clustering to achieve a joint para-
metrization of the fiber bundles in a group of subjects. Sig-
nificantly extending a previous conference paper [7], we combine
this idea with methods for outlier removal and feature selection,
and demonstrate that this allows us to detect disease, predict
disease activity, and visualize diffusion parameters along major
nerve fiber bundles, highlighting specific segments on fiber bun-
dles that differ most between the populations.

The structure of our paper is as follows: After reviewing related
work in Section 2, we present the individual steps of our Bun-
dleMAP approach in Section 3. In particular, Section 3.3 describes
the core idea of using manifold learning for joint parametrization,
and Section 3.5 describes a stable method to decide on the number
of sections per bundle, and a method for imputing missing
features.
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Section 4 contains results and evaluations. In Section 4.2, we
demonstrate that, compared to an earlier work [8], BundleMAP
shows superior accuracy in detecting Systemic Lupus Er-
ythematosus, a neuroinflammatory disease that can affect cerebral
white matter. In Sections 4.3 and 4.4, we report results of using our
system for regression and localized hypothesis testing. In Section
4.6, we find that the fiber bundles that our method highlights as
important for disease detection are in excellent agreement with
previous findings from the literature [8,9]. In Section 4.7, we dis-
cuss advantages of using manifold learning for bundle para-
metrization over a previously proposed alternative, and perform a
direct comparison [10]. Finally, Section 5 concludes the paper.

2. Related work

Localized comparison of white matter structures requires their
joint parametrization, i.e., anatomical correspondences between
fiber bundles of different subjects. Previous methods for this re-
quire manual specification of start and end points [11,12] or
manual alignment of a cutting plane [10], whereas BundleMAP
works fully automatically. Some more automated methods fit de-
formable models [13] or match fibers to a tractography atlas [14]
which, unlike our tool, makes prior assumptions on the bundle
shape.

Among the existing alternatives, tract-based morphometry
(TBM) [15] is the approach most similar to ours. However, it has
not been used for supervised machine learning. Moreover, we take
a novel perspective on the problem, leading to computational
techniques that are completely different from those used in TBM.
The exact relationship between BundleMAP and TBM is discussed
in more detail in Section 3.3.

3. Method: our proposed bundlemap pipeline

The overall pipeline of our BundleMAP method consists of four
steps, which are illustrated in Fig. 1. First, the major nerve fiber
bundles are automatically extracted. Since this is not fully reliable,
a combination of outlier removal techniques is applied at the
second stage. In the third and most important step, manifold
learning is used to establish a joint parametrization of the re-
maining fibers by mapping them to the latent fiber bundle core.
Finally, this parametrization is used to map some common diffu-
sion parameters as a function of position along the bundles.
Adaptive binning, in which feature selection determines the most
suitable number of bins, creates our final feature vectors.

3.1. Tracking the fiber bundles

Different diffusion models are available to reconstruct nerve
fiber bundles from dMRI data. Among them, Diffusion Tensor
Imaging is the most widely used, and is employed in our study
[16]. More elaborate methods, such as constrained spherical de-
convolution [17] or multi-tensor models [18], significantly increase
accuracy especially in fiber crossings, and could easily replace
Diffusion Tensor Imaging in our pipeline. Unfortunately, they
cannot be used with our current data due to its limited angular
resolution.

Even though rules exist on how to place seed points for
tracking the major fiber bundles [19], we want to avoid having to
follow them manually for each individual subject. Therefore, we
define seed regions in a template that represents the average of a
large number of healthy normal brains. Since this template is
aligned with a widely used brain atlas created at the Montreal
Neurological Institute, its coordinates define the so-called MNI
space.

For each subject, tractography is performed in its individual
coordinate system, which allows us to sidestep the difficult pro-
blem of correctly adjusting local fiber directions while spatially
transforming dMRI data [20]. Seed points are automatically
transferred from the template using a nonlinear transformation
obtained from an established algorithm for volumetric registration
of Fractional Anisotropy [21]. The resulting fibers are warped back
into MNI space using the inverse of that transformation.

3.2. Eliminating erroneous fibers

There are two main sources of error that can lead to the in-
clusion of erroneous fibers during tracking. The first is automatic
placement of seed points using image registration, which is known
to suffer from inaccuracies [22]. The second are imperfections in
the tractography itself, which are known to occur where tracts run
closely together or where, at the imaging resolution, two or more
fiber bundles cross [23].

We follow two strategies to remove erroneous fibers. First,
anatomical knowledge imposes natural constraints on many
bundles, and we filter out fibers that violate them. For example,
bundles that are known to connect ipsilateral regions should not
cross the mid-sagittal plane. Second, in the set of remaining fibers
from all subjects, it is often quite obvious which of them are er-
roneous, since they follow trajectories that differ substantially
from the majority of all reconstructed fibers. We use a one-class
support vector machine (SVM) with a radial basis function kernel
[24] to separate out those atypical fibers.

A one-class SVM treats its input data as samples from a prob-
ability distribution, and estimates the support of that distribution.
In other words, it identifies a region in the input space that should

Fig. 1. The four main steps of the BundleMAP pipeline are fiber tractography, outlier removal, joint parametrization of a group of subjects, and derivation of spatially
localized features that can be used for supervised learning, hypothesis testing, and visualization.
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