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a b s t r a c t 

This paper aims to propose a new hyperspectral target-detection method termed the matched subspace 

detector with interaction effects (MSDinter). The MSDinter introduces “interaction effects” terms into the 

popular matched subspace detector (MSD), from regression analysis in multivariate statistics and the bi- 

linear mixing model in hyperspectral unmixing. In this way, the interaction between the target and the 

surrounding background, which should have but not yet been considered by the MSD, is modelled and 

estimated, such that superior performance of target detection can be achieved. Besides deriving the MS- 

Dinter methodologically, we also demonstrate its superiority empirically using two hyperspectral imaging 

datasets. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Hyperpsectral target detection aims to detect small objects from 

the background of a hyperspectral image (HSI) by the use of known 

target spectra. The number of target pixels is relatively very small 

compared with the total number of pixels in an HSI, e.g. only a 

few target pixels in millions of pixels. Typical applications of the 

HSI target detection include the detection of specific terrain fea- 

tures, minerals and crops for resource management, the detection 

of military vehicles and aeroplanes for defence, etc. Comprehen- 

sive overviews and gentle tutorials of the HSI target detection can 

be found in [1–4] . 

Target detection algorithms are typically derived from the bi- 

nary hypothesis model, which consists of two competing hypothe- 

ses: the H 0 (absence of target) hypothesis and the H 1 (presence 

of target) hypothesis. The likelihood ratio or the generalised likeli- 

hood ratio (GLR) of functions of target and background can be used 

to construct a detector. 

Some well-known detectors have been successfully applied to 

the HSI target detection, including the matched subspace detec- 

tor (MSD) [5] , the orthogonal subspace projection detector (OSP) 

[6] , the spectral matched filter (SMF) [7,8] , the adaptive coher- 

ence/cosine detectors (ACEs) [9,10] and the constrained energy 

minimization (CEM) [11] . Kwon et al. [12] also extend the MSD, 

OSP, SMF and ACEs to their corresponding kernel versions based 
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on the kernel-based learning theory. Several methods have been 

developed based on the CEM specifically [13–15] . Yang et al. 

[13] utilise an inequality constraint on the output detector to solve 

the spectral variability problems, instead of the equal constraint on 

the CEM. A hierarchical structure of CEM [14] is proposed, which 

suppresses the backgrounds while preserving the target spectra to 

boost the performance of CEM. In a very recent work, Yang et al. 

[15] use total variation to constrain the spatial smoothness and 

show a promising detection performance when only one single tar- 

get spectrum is available for training. 

Sparse representation (SR)-based algorithms have also been ap- 

plied to the HSI target detection [16–21] . Chen et al. [16] propose 

a sparsity-based target detection (STD), linearly modelling a test 

pixel by the training background samples and the training target 

samples. Zhang et al. [17] propose an SR-based binary hypothesis 

model (SRBBH), which is in the similar fashion of the binary hy- 

pothesis model of the MSD. The kernel versions of the STD and 

SRBBH can be found in [18] and [19] , respectively. Detailed reviews 

of SR algorithms for the HSI classification and detection can be 

found in [20,21] . 

The assumption of these well-known detectors [5–10,16,17] is 

the linear mixing model (LMM) [22] . The LMM assumes that the 

spectrum of a mixed pixel can be represented as a linear combina- 

tion of component spectra (endmembers). The weight (abundance) 

of each endmember spectrum is proportional to the fraction of the 

pixel area covered by the endmember. If there are p spectral bands, 

the p -variate spectrum x = [ x 1 , . . . , x p ] 
T of a mixed pixel can be ex- 
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pressed as a mixture of K endmembers m k with additive noise: 

x = �K 
k =1 a k m k + n = Ma + n , (1) 

where M is a p × K matrix whose columns are the K endmember 

spectra m k = [ m k, 1 , . . . , m k,p ] 
T for k = 1 , . . . , K, respectively; a = 

[ a 1 , . . . , a K ] is the fraction abundance vector; and n = [ n 1 , . . . , n p ] 
T 

represents the additive Gaussian white noise. Physical consider- 

ations dictate that the abundances have to satisfy 1) the non- 

negative constraint, i.e. a k ≥ 0, and 2) the sum-to-one constraint, 

i.e. �K 
k =1 

a k = 1 . Although the non-negative constraint and the sum- 

to-one constraint are quite meaningful, they are not always en- 

forced because it significantly complicates the solving of detection 

problems. As explained in [22] and as usually the case, we can re- 

lax both constraints in target detection. 

For the HSI target detection, the underlying physical assump- 

tion of the LMM is that each incident photon interacts with one 

earth surface component only and the reflected spectra do not mix 

before entering the sensor. Therefore, adopting the LMM in [5–

10,16,17] assumes that the target spectral signature in the scene 

remains linearly mixed with the surrounding background spectra 

after entering the sensor. However this is not true in practice, since 

the target spectral signatures captured by the hyperspectral sensor 

can appear significantly different from the true underlying spec- 

trum. The exhibited target spectrum may be contaminated by the 

interaction effect of its true underlying spectrum and its surround- 

ing environments. The reasons can be, but not limited to, that the 

sensor picks up the signal from multiple scattering of photons and 

as a result, the abundance vector of targets will be dependent on 

the characteristics of their surrounding background. 

To cope with multiple scattering problems and to model inter- 

action effects, the bilinear mixing model (BMM) has been proposed 

in the hyperspectral analysis, particularly for the unmixing applica- 

tions [23–28] . Nascimento et al. [23] and Fan et al. [24] address the 

HSI unmixing problem by taking into account of the second-order 

scattering interaction between endmembers, referred to as “Nasci- 

mento model” and “Fan model” hereafter, respectively. The two 

models are distinguished by different sum-to-one constraints im- 

posed on the abundances. Halimi et al. [25] propose a generalised 

bilinear model (GBM) to unmix an HSI pixel and solve the problem 

by a hierarchical Bayesian algorithm. Practical analysis [26–28] also 

demonstrate impacts of different orders of interactions in real HSI 

mixing problems, such as tree cover estimates in orchards. It shows 

that the second-order interaction has the most significant effect 

of nonlinear mixing and the higher order interactions can be ne- 

glected. On top of the BMM, Heylen et al. [29] derive a multilinear 

mixing model (MLM) which extends the BMM to an infinite orders 

of interactions. Experimental studies in [23–29] have been carried 

out and shown superior performance of the above-mentioned non- 

linear mixing models to conventional linear mixing models. 

In this paper, to account for the effect of interaction between 

the target and their surrounding background on the target spectral 

signature captured by the sensor, we propose to introduce inter- 

action effects into the models for the HSI target detection. Specifi- 

cally, we propose a new model, termed the matched subspace de- 

tector with interaction effects (MSDinter), by introducing the terms 

that describe the interaction effects between the target and its sur- 

rounding background. To our knowledge, such model is the first 

one proposed for the HSI target detection. The proposed MSDin- 

ter model is able to capture better the target-background mixing 

effects within pixel spectrum and therefore can improve the per- 

formance of target detection. 

2. The matched subspace detector 

The matched subspace detector (MSD) [5] is a popular al- 

gorithm which explores the idea of the LMM binary hypothe- 

sis model (4) . The task is to determine if a test pixel x con- 

tains materials characterised by exemplar target spectral signa- 

tures, i.e. whether the test pixel can be represented by a linear 

combination of target spectral signatures and background spectral 

signatures. In the MSD, the target spectral signatures and back- 

ground spectral signatures are represented by the bases of a target 

subspace and the bases of a background subspace, respectively. The 

underlying assumption of the MSD in the HSI target detection is 

that each basis vector of these subspaces represents an endmem- 

ber, which follows the assumption in the LMM (1) . 

When a target pixel presents, the spectrum of an observed pixel 

can be decomposed into two components under the LMM assump- 

tion, as 

x = T γ + B β + n , (2) 

where T = [ t 1 , . . . , t r t ] is a p × r t matrix representing the target 

subspace, and B = [ b 1 , . . . , b r b 
] is a p × r b matrix representing the 

background subspace; T is derived from a training target matrix 

M T ∈ R 

p×N t whose columns are the N t target spectra M T ( ·, n t ) 

for n t = 1 , . . . , N t , respectively; B is derived from a training back- 

ground matrix M B ∈ R 

p×N b whose columns are the N b background 

spectra M B ( ·, n b ) for n b = 1 , . . . , N b , respectively; γ and β are the 

corresponding abundance vectors of the subspace T and the sub- 

space B , respectively; and n is the additive Gaussian white noise. 

When the target is absent, the spectrum of the observed pixel 

is adequately described by 

x = B β + n , (3) 

which is a reduced order model. Therefore, to decide whether a 

given target is present or not, we can fit the full model and the 

reduced model to the test pixel spectrum and check which model 

provides a better fitting according to certain criterion. Formulated 

as a binary hypothesis test, the detection problem becomes a deci- 

sion between the two competing hypotheses H 0 and H 1 , 

H 0 : x = B β + n , target absent , 

H 1 : x = T γ + B β + n , target present . 
(4) 

Model (4) is defined as the MSD model. Using the generalised 

likelihood ratio test (GLRT) [3] , the output detector of the MSD 

model is given by 

D MSD 

(x ) = 

x 

T P 

⊥ 
B x 

x 

T P 

⊥ 
V 

x 

H 1 
≷ 

H 0 

ν, (5) 

where P 

⊥ 
B = I − P B with P B = B (B 

T B ) −1 B 

T being the projection ma- 

trix onto the column space of B ; and P 

⊥ 
V 

= I − P V with P V = 

V (V 

T V ) −1 V 

T being the projection matrix onto the column space 

of V , where V is a p × (r t + r b ) concatenated matrix of T and B , 

i.e. V = [ T , B ] . 

The value of D MSD ( x ) is compared to a threshold ν to make a 

final decision of which hypothesis should be rejected for test pixel 

x . In general, any set of orthogonal basis vectors that spans the 

corresponding subspace can be used as the column vectors of B 

and T . In this paper, the significant eigenvectors (normalised by the 

square roots of their corresponding eigenvalues) of the background 

and target covariance matrices C b and C t are used to create the 

column vectors of B and T , respectively. 

3. The matched subspace detector with interaction effects 

(MSDinter) 

The linear model (2) in the MSD assumes that the abundance 

vector γ of the target subspace T in composing a target pixel x will 

not change if the characteristics of the background change. Specifi- 

cally, the effect of one-unit change of T on x is the marginal effect 
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