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a b s t r a c t 

Multiple Kernel Learning (MKL) literature has mostly focused on learning weights for base kernel com- 

biners. Recent works using instance dependent weights have resulted in better performance compared to 

fixed weight MKL approaches. This may be attributed to the fact that, different base kernels have varying 

discriminative capabilities in distinct local regions of input space. We refer to the zones of classification 

expertize of base kernels as their “Regions of Success” (RoS). We propose to identify and model them 

(during training) through a set of instance dependent success prediction functions (SPF) having high val- 

ues in RoS (and low, otherwise). During operation, the use of these SPFs as instance dependent weighing 

functions promotes locally discriminative base kernels while suppressing others. We have experimented 

with 21 benchmark datasets from various domains having large variations in terms of dataset size, in- 

terclass imbalances and number of features. Our proposal has achieved higher classification rates and 

balanced performance (for both positive and negative classes) compared to other instance dependent and 

fixed weight approaches. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Support Vector Machines (SVM, henceforth) have proven to be 

a successful tool for solution of a wide range of classification prob- 

lems since their introduction in [1] . SVM learns a maximum mar- 

gin discriminative hyperplane, which in turn implies good gener- 

alization capabilities on unseen data [2] . The core idea of SVM is 

to formulate the margin maximization problem as a convex opti- 

mization problem, which has a single global minimum. SVM uses 

a kernel function for mapping the data to the “kernel space”. A 

discriminative hyperplane is then learned in kernel space with the 

maximum margin criterion. Thus, selection of kernel function is a 

critical step in training SVM. Recent works have demonstrated the 

usability of weighted combination of multiple base kernels instead 

of a single one. In this work we introduce a new framework for 

instance dependent weighing of the kernels in the combination. 

We propose to link the weight assigned to a kernel to its perfor- 

mance in local regions of the feature sub-space. The motivation of 

our proposal is introduced in Section 1.3 before which, we briefly 

discuss the basic formulation of the SVM in Section 1.1 and the 

feature-kernel selection problem in Section 1.2 . 
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1.1. The support vector machine 

Given a set of n labeled training instances, S = { ( x i , y i ) ; i = 

1 , . . . , n } with x i ∈ R 

D and y i ∈ {−1 , +1 } , the hyperplane learned 

by SVM is given by, f ( x l ) = 〈 w , �( x l ) 〉 + b = 0 where, the func- 

tion � ( ·) maps the data from feature space ( R 

D ) to the kernel 

space ( R 

D � ). The hyperplane coefficient vector w and bias b are es- 

timated by solving the following quadratic optimization problem. 

Minimize 
1 

2 

‖ w ‖ 

2 
2 + C 

n ∑ 

i =1 

ζi 

w.r.t. w ∈ R 

D �, ζ ∈ R 

n 
, b ∈ R 

s.t. y i ( 〈 w , �( x i ) 〉 + b ) ≥ 1 − ζi i = 1 , 2 , . . . , n 

(1) 

Here, ζ is a vector of slack variables and C controls the trade off

between generalization (model simplicity) and classification error 

[2] . This optimization problem has one constraint per training in- 

stance and can be reformulated using its Lagrangian dual function 

as Maximize 
∑ n 

i =1 αi − 1 
2 

∑ n 
i =1 

∑ n 
l=1 αi αl y i y l 〈 �( x i ) , �( x l ) 〉 with 

respect to α ∈ [0, C ] n ; such that, 
∑ n 

i =1 αi y i = 0 where, αi 

is a Lagrange multiplier corresponding to the i th constraint 

y i (〈 w , �( x i ) 〉 + b) ≥ 1 − ζi in the primal formulation. This dual 

formulation is a typical quadratic programming problem (QP). 

Solving this gives us the hyperplane coefficient vector as w = ∑ n 
i =1 αi y i �(x i ) . Thus, the expression for the hyperplane can be 
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rewritten as, 

f ( x l ) = 

n ∑ 

i =1 

αi y i 〈 �( x i ) , �( x l ) 〉 ︸ ︷︷ ︸ 
k ( x i , x l ) 

+ b = 0 (2) 

We note that only active constraints have non-zero values and 

the corresponding training instances are known as support vec- 

tors [2] . The label predicted by SVM for an unknown test pattern 

x l is given by sign ( f ( x l )). SVMs use the inner product 〈 �( x i ) , �( x l ) 〉 
during training as well as testing. Hence, inner products of explic- 

itly defined mapping functions � ( ·) can be replaced by a kernel 

function, k ( x i , x l ). The SVM hyperplane ( Eq. 2 ) behaves as a lin- 

ear classifier in the kernel space. Thus, the kernel function is en- 

tirely responsible for making data linearly separable in the kernel 

space [3] . Kernels compute the similarity (or dissimilarity) between 

two instances. The mappings defined by kernels are characterized 

by nature and distribution of input instances along with similar- 

ity functions used. However, various kernels with standard similar- 

ity functions have been used successfully in the literature. Some 

popularly used kernels are Linear ( k L ( x i , x l ) = 〈 x i , x l 〉 ), Radial Ba- 

sis Function (RBF) ( k R ( x i , x l ) = exp (−γ (|| x i − x l || 2 2 
)) ; γ ∈ R 

+ ) and 

Polynomial ( k P ( x i , x l ) = (〈 x i , x l 〉 + 1) q ; q ∈ N ) [2] . 

Several works have used domain specific kernels (designed by 

experts) considering the nature of data. For example, string ker- 

nels are used for natural language processing and image clas- 

sification [4] . Graph kernels [5] were used in drug discovery, 

chemo-informatics and bio-informatics for analyzing structural 

data. Aseervatham et al. [6] have used semantic kernel for classify- 

ing medical documents. The kernels suitable for a particular prob- 

lem are generally specified by domain experts. However, the re- 

search community has mainly focused on automatic selection and 

learning of most suitable kernels for specific problems [3,7,8] . 

1.2. The feature and kernel selection problem 

The SVM formulation as a quadratic optimization problem 

( Eq. 1 ) has a single global minimum and has implicit dependence 

on data dimension [2] . SVMs have overcome several problems of 

conventional discriminative models (neural networks, decision tree 

etc.) such as, convergence to local minima and explicit depen- 

dence on data dimension [1,2] . However, SVM faces the following 

three challenges. First, SVM testing becomes computationally ex- 

pensive if the learned representation has a large number of sup- 

port vectors. The number of support vectors depend on complex- 

ity of learned model and can be reduced substantially by optimal 

selection of features and kernels. Second, SVM has implicit depen- 

dence on data dimension. Thus, an external feature selection pro- 

cedure is required to prevent degradation in performance of SVM 

due to presence of irrelevant features [3] . Third, various kernels 

have different notions of similarity and thus capture distinct views 

of features. Consequently, each kernel leads to a distinct hyper- 

plane in feature space ( R 

D ). Thus, selection of optimal similarity 

function and its parameters is crucial for enhanced performance of 

SVM [2,3] . All these shortcomings of SVMs can be solved to an ex- 

tent by an effective f eature and (corresponding) similarity function 

selection procedure. 

Several methods are proposed in literature for optimal selection 

of features and similarity functions (or kernels). A general purpose 

automatic feature selection procedure still remains an unsolved 

problem [3,7,8] . More recent works [3,7,9–11] have focused largely 

on learning data dependent kernels instead of selecting a particu- 

lar one. These are learned by combining various standard as well 

as domain specific base kernels in multiple kernel learning (MKL) 

framework. These component kernels are known as base kernels. 

Each base kernel in the weighted combination may be defined ei- 

ther on the entire feature vector or on a subset of features. Thus, 

it is characterized by the subset of features used and the simi- 

larity function. The kernel combiners (weights) are learned from 

training data to determine the kernel’s relevance to SVM decision. 

Most MKL methods have proposed to use fixed combiner weights 

[3,7,8] as opposed to instance dependent weighing approaches pre- 

sented in [9,12] . It was observed that, the instance dependent ker- 

nel combination schemes worked better compared to the ones us- 

ing fixed weights. 

1.3. Proposed approach 

Instance dependent MKL approaches learn a set of weighing 

functions instead of fixed weights. Given a test instance, weighing 

functions are used to determine the relevant base kernels. Exist- 

ing instance dependent MKL approaches partition the feature space 

into non-overlapping regions. This partitioning is either guided by 

prior knowledge [12] or optimized to minimize classification error 

[9] . For each partitioned region, locally best performing kernel(s) 

is (are) identified and assigned high weight(s). The partitioned re- 

gions are then called as “regions of influence” [9] of best perform- 

ing kernels. These approaches have inherently assumed the regions 

of influence of kernels to be linearly separable in feature space. 

On the other hand, we observe that each kernel has local regions 

of expertise in feature (sub)space, where it has good discrimina- 

tive capability or high likelihood of successful classification ( Fig. 1 ). 

Even so in most practical cases, these regions can not be obtained 

by merely partitioning the feature space with hyper-planes. This 

motivated us to link kernel weights to their discriminative capa- 

bilities in different local regions of feature space. We call these re- 

gions as Regions of Success (RoS) and thus, we name our proposal 

as Success based Locally Weighted Kernel Combination ( S-MKL , 

henceforth). 

We observe, SVMs using individual base kernels have diver- 

sity in classification errors if they are constructed using indepen- 

dent features and distinct similarity functions. This diversity in 

errors indicates that base kernels have expertise or discrimina- 

tive capabilities in different regions of feature space ( Fig. 1 ) [14,15] . 

This heterogeneity in discriminative regions may lead to supe- 

rior performance subject to existence of suitable kernel combi- 

nation schemes. However, fixed kernel weights may degrade the 

performance of kernel combination in local regions of the fea- 

ture space if number of discriminative kernels are outnumbered by 

non-discriminative ones [9,12] . In S-MKL, we desire to suppress the 

non-discriminative kernels to effectively harness the error diversity 

in base kernels. This suppression ensures that the resultant kernel 

combination has higher discriminative capabilities leading to en- 

hanced classification performance [3] and is more aligned with the 

“ideal kernel” [16,17] . 

We propose to identify and model the regions of success (RoS) 

of each base kernel in the feature space. SVMs are trained with 

individual base kernels and the correctly classified instances (both 

positive and negative) for each SVM are identified from the cross 

validation set. The (small spatial) neighborhoods of these correctly 

classified instances for a certain SVM collectively form the regions 

of success of the corresponding base kernel. We believe that base 

kernels have discriminative capabilities in their regions of success. 

We argue that in a linearly weighted combination of base kernels, 

it is necessary to promote the ones having discriminative capa- 

bilities while suppressing others. Such a weighing scheme aligns 

the combined kernel with the ideal one thereby leading to im- 

proved performance. This led us to propose an instance depen- 

dent weighing scheme in terms of Success Prediction Functions 

(SPFs, henceforth). Each base kernel has its own SPF and is learned 

through regression analysis over its RoS. For the SPF of a cer- 

tain base kernel, target for regression model is set to 1.0 for cor- 

rectly classified (by SVMs) training instances (from cross validation 
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