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A B S T R A C T

Occlusion boundary detection and figure/ground assignment are among the fundamental challenges for the real
world visual pattern recognition applications, such as 3D spatial understanding, robotic navigation and object
search. We attack these challenges by extracting an intermediate-level image/video representation, namely,
Common-Fate Fragments. A Common-Fate Fragment is composed of both over-segmented region and edge
fragments. Physically, it exists as a coupled edge-region fragment bound with dynamic information. Common-
Fate Fragment candidates are generated by an integrated line-region growing process, which does not require
complete object segmentation or closed object boundary extraction. To identify Common-Fate Fragments from
these extracted candidates, we introduce a back-projection verification scheme that can circumvent the
notoriously difficult task of direct motion estimation on boundaries. This allows occlusion detection and
figure/ground labeling to be jointly conducted within a simple but effective hypothesize-and-test framework. We
test the proposed method on YouTube Motion Boundaries (YMB) data set and two benchmark data sets: the
CMU and Berkeley motion data sets. Even though the idea of the proposed method is simple and transparent,
promising experimental results are observed.

1. Introduction

Each frame of a video is a perspective projection of the 3D world,
which is full of opaque objects occupying different depths. Objects that
are spatially closer to a camera will occlude, either entirely or partially,
the objects that are further away. In typical videos of the real-world, the
occurrence of occlusion is the norm rather than an exception [38].
Therefore, detection of occlusion due to depth discontinuity is crucial
for pattern recognition and computer vision to operate in the real
world.

Occlusion boundaries and appearance edges are two distinct
conceptions. Following the established definition [17], an appearance
edge refers to the typical output of an edge detection algorithm on
intensity or color image data, whereas an occlusion boundary is
explicitly created by objects covering one another. After decades of
development, the performance of appearance edge detection algo-
rithms is becoming closer and closer to human performance on
benchmark datasets [4,42]. Occlusion boundaries typically occur at
appearance edges, but a detected appearance edge is in no way
sufficient to guarantee an occlusion boundary [17]. Once an appear-
ance edge has been formed, it needs to be identified as a boundary or

not. If it is a boundary, then we may ask which side of it is the figure
(object) and which side is the occluded background.

The human vision system can easily deal with this kind of boundary
detection and figure/ground labeling tasks. Psychophysical research
shows that the visual system makes use of occlusive relations in the real
world to recover depth, contour, and surface [13]. A Gestalt principle,
“common-fate” states that objects moving together should be grouped
together. Evidence suggests that this simple strategy is unconsciously
used for occlusion reasoning and figure/ground assignment in human
vision [24]. According to this rule, if an edge moves together only with
a region on one of its sides, it should belong to that side region (the
figure/foreground region) [7,25]. If the regions on both sides of a given
edge move together, most likely this edge is an appearance edge instead
of an occlusion boundary.

However, without an accuracy motion estimation on an edge, it is
not a trivial task to judge whether a given edge moves together with
only one of the regions on its sides. Brightness constancy and spatial
smoothness are two common assumptions that underlie typical optical
flow estimation methods [10]. The state-of-the art optical flow estima-
tion methods already can achieve satisfactory results when these
assumptions are met. However, they encounter problems at occlusion
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boundaries where the assumption of spatial smoothness is violated. As
a result, motion estimates are often imprecise and blurry in these areas
as demonstrated by Fig. 1. Even though many efforts [18,36] have been
made to prevent blurring of optical flow across image boundaries,
reliable motion estimation at object boundary places is still notoriously
difficult [8,34].

To tackle the above challenges, we introduce an intermediate edge-
region representation and back-projection verification scheme, which
can circumvent the direct motion estimation for boundary areas. The
intermediate representation is called Common-Fate Fragments and
explicitly groups edges with regions on either side, which we refer to as
side-regions. These edge-region pairs facilitate the reasoning about
occlusion detection and figure/ground labeling, which is conducted in a
simple but effective hypothesize-and-test framework.

Inspired by the part-whole hierarchy perceptual organization
principle [27], we link our intermediate Common-Fate Fragment
representation directly to the back-projection verification scheme.
Psychologists believe that raw visual signals are first grouped into
some elemental visual units, which are composed of both over-
segmented regions and edges [26,27], then structured features are
extracted for building more semantically meaningful visual entities. We
believe that complete object segmentation and closed object boundary
extraction are not necessary and also not achievable for a low or
middle-level computer vision process because “what you see is what
you need.” In other words, these ill-defined problems can only be
solved in a high-level process guided by specific hypotheses. Therefore,
without the need of complete object segmentation or closed object
boundary extraction, we extract both region and edge fragments
(building blocks of Common-Fate Fragment candidates) simulta-
neously through an integrated line-region growing process. The
extracted region fragments facilitate a filtering process to eliminate
these motion outliers for a reliable affine motion model estimation.

Based upon an estimated affine motion model on one side-region
fragment, the edge fragment can be back-projected to the previous
frame of the video stream. If the edge fragment is moving together with
the side-region fragment, the back-projected edge fragment will match
the edge map on the previous frame very well. By comparing the fitness
of two back projections (using the affine motion models estimated from
both side-region fragments), we can infer with which side-region

fragment that an edge fragment is moving. Therefore, we can apply
the “common-fate” rule to identify an occlusion boundary and assign
figure/ground labels to its two attached regions simultaneously.

2. Related work

Occlusion boundary detection and figure/ground assignment are
long standing research topics in pattern recognition and computer
vision. There are numerous related literatures. Here, we only review
the most directly related work which explicitly exploits motion cues.

Prior attempts to use motion cues for occlusion boundary detection
can be traced back to the early work of motion layers [2]. The key idea
is to fit each moving object into a motion layer so that motion
segmentation can be obtained by assigning each pixel into different
layers. Some researchers, such as, Wang and Adelson [40], and Bergen
and Meyer [6], identify such occasions by checking whether a group of
pixels on the edge of a motion layer are outliers. Most of these motion
layer methods need a global multi-layer parametric motion model.
However, the model parameter estimation is a difficult task without
knowing the model order. It has been noted that these methods are
sensitive to the accuracy of optical flow and that accurate optical flow is
hard to estimate without prior knowledge of the occlusion boundaries
[34]. Therefore, occlusion detection and optical flow estimation
become “chicken and egg problems.” Unknown motion layers and
noisy optical flow estimation around occlusion boundary regions are
the two difficulties faced by these motion layer methods. To attack
these challenges, Ayvaci et al. [5] formulate occlusion detection and
optical flow estimation as a joint optimization problem.

Based on the assumption that occlusion boundaries occur at the
static edges, the more recently developed methods extract static edge
cues as candidates for occlusion boundary detection. Moreover, with-
out the assumption of the number of motion layers or moving objects,
local motion models have been verified to work well in handling motion
and occlusion for both challenging synthetic and real video streams
[34]. In order to generate candidate edges and extract local motion
features, optical flow estimation and over-segmentation are commonly
conducted as a pre-process [15,29,33,34]. The performance of these
methods largely depends on two factors: proper edge candidate
selection and reliable local motion model estimation. In general, these

Fig. 1. The first row shows input video sequences from a bench mark CMU data set [33]. The second row shows the visualized optical flows with color-coding [8]. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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