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a b s t r a c t 

In this paper, we propose a novel rotation invariant and noise tolerant descriptor for texture classifica- 

tion. This descriptor is based on circular statistics of Fourier phase. This one is recovered from the third 

order spectrum namely the bispectrum, known to provide invariance properties and to preserve phase 

information. The computational complexity of two dimensional image is reduced using Radon transform. 

At first, the input image is decomposed into a set of 1D radon projections. Then, for each projection the 

bispectrum is computed and the phase vector is recovered. Features vectors contain circular statistics of 

each phase vector recovered from bispectrum of each 1D projection. The proposed descriptor is evalu- 

ated on three test suites from the database “Outex” and compared with three descriptors also based on 

the phase. According to the classification experiments, our descriptor achieves highest rates under noise, 

illumination and rotation changes. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Texture analysis is an important area of study in image pro- 

cessing which seeks to find an efficient description of textures. 

Several methods for texture representation have been proposed 

in the literature. Since repetitiveness is an important characteris- 

tic of the texture, it is therefore reasonable to expect a frequency 

based representation of the texture in terms of magnitude and 

phase components. As stated in [16] , the most valuable informa- 

tion of an image resides in phase and not in magnitude. Recently, 

the phase information in images plays more important role in vari- 

ous tasks such as texture image retrieval [13] , facial recognition [4] , 

biomedical engineering [5,17] and texture analysis [14] . However, 

these methods describe phase in terms of autocorrelation, which 

means second order statistics, so they assume Gaussianity of im- 

ages which is not the case in reality as proved in [10] and lose all 

the phase information. In contrast, Higher Order Spectra (HOS) do 

contain such informations due to their important properties which 

are: 

• The ability of capturing and preserving the Fourier phase of 2D 

processes that are non Gaussian. 
• Higher order spectra of a Gaussian filed is zero which allows 

to suppress Gaussian noise and detect Fourier phase in high 

signal-to-noise ratio domain. 
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• Robust against geometrical distortions. 

These important properties yield higher order spectra and es- 

pecially the third order namely the bispectrum, to become an in- 

teresting and useful tool in several fields in image such as: pattern 

recognition [6] , image restoration [19,20] , texture classification [9] 

and biomedicine [1] [2] . In this paper, we will retrieve the Fourier 

phase from bispectrum to propose a new descriptor for texture 

classification based on circular statistics. Given the high amount of 

time needed to compute the bispectrum information, the input im- 

ages are decomposed into a set of 1D projections using the Radon 

transform. Once image decomposition achieved, the bispectrum in- 

formation is computed from each 1D image projection obtained. 

The phase information is therefore recovered from the bispectrum. 

The circular statistics of the phase are then calculated and used as 

input for the Support Vector Machine (SVM) 1 classifier. In order to 

evaluate our procedure, classification tests are performed on tex- 

tures from the famous database Outex 2 , and compared with the 

prominent methods in texture classification also derived from the 

phase information as: 

• Local phase quantization (LPQ) [18] uses the phase information 

computed locally in a window for every image position. 
• Rotation invariant local phase quantization (RILPQ) [15] uses lo- 

cal frequency Fourier phase by estimating the local orientations 

and then compute the directed binary descriptor. 

1 https://www.csie.ntu.edu.tw/ ∼cjlin/libsvm/ . 
2 http://www.outex.oulu.fi/ . 
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• Rotation invariant local frequency descriptor (RILFD) [12] uses the 

phase features of the Local frequency components defined on a 

circle at each pixel. 

The remainder of this paper is organized as follows: The main 

functions and properties of bispectrum are described in Section 2 . 

Our phase features extraction procedure is detailed in Section 3 . 

Classification tests and results are exposed in Section 4 . Finally, 

Section 5 concludes our work. 

2. Bispectrum: definition and properties 

The bispectrum of a 1D signal x(t) is the Fourier transform of 

the triple correlation. With the convolution theorem it can be de- 

fined as: 

B ( f 1 , f 2 ) = X ( f 1 ) .X ( f 2 ) . 
∗X ( f 1 + f 2 ) (1) 

where X denotes the Fourier transform of the signal x and 

∗X its 

conjugate at frequency f. 

Unlike the power spectra, higher order spectra as in the case of 

bispectrum satisfy invariance properties [7] such as: 

• Rotation invariance: 

A rotation does not change the analysed image since the phase 

values are summed in the product of Fourier coefficients from 

the equation of bispectrum as proved by Eq. (2) . 

Let B x ( f 1 , f 2 ) and B x θ ( f 1 , f 2 ) be respectively the bispectrum of x 

and the bispectrum of the rotated version. 

B x θ ( f 1 , f 2 ) = X θ ( f 1 ) .X θ ( f 2 ) . 
∗X θ (− f 1 − f 2 ) 

B x θ ( f 1 , f 2 ) = X ( f 1 ) .e 
−2 jθ f 1 .X ( f 2 ) .e 

−2 jθ f 2 .X ( f 1 + f 2 ) .e 
−2 jθ (− f 1 − f 2 ) 

B x θ ( f 1 , f 2 ) = X ( f 1 ) .X ( f 2 ) . 
∗X (− f 1 − f 2 ) 

(2) 

• Noise immunity: The bispectrum of a Gaussian process is zero. 

In other word Gaussian noise is suppressed in higher order 

spectra. 
• Phase preservation: The bispectrum is also known to preserve 

phase information unlike power spectrum that preserves only 

amplitude information. Due to the importance of Fourier phase 

in image processing , and the loss of this information through 

the conjugate multiplication. We use bispectrum to recover the 

phase lost in the power spectra. 

In this paper we are interested in the phase information re- 

trieved from the bispectrum. The recovery algorithm is detailed in 

Section 3 . 

3. The proposed method 

Given the fact that the phase contains the essential informa- 

tions of the image [16] and this information is lost through the 

spectrum, the phase used in our approach is derived from the bis- 

pectrum known to retain it. 

A schematic block diagram of our method is depicted in Fig. 1 . 

Firstly, we decompose the image into a set of 1D projections using 

Radon transform. After, we estimate the bispectrum for each pro- 

jection. Then, we recover the phase information for each bispec- 

trum. Finally, we compute the circular statistics (M,V,S,K) of each 

phase. These statistics will feed our features vector and will be 

used as an input of the SVM classifier. 

Precisely, our proposed method involves three steps that we ex- 

plain in the following subsections. 

3.1. Radon transform 

The first step in our algorithm is calculating the bispectrum of a 

given 2D image. Since the bispectrum of a 1D signal is a 2D func- 

tion, the bispectrum of a 2D signal is a 4D function as shown by 

Eq. (3) where I is the 2D Fourier transform of an image: 

B ( f 1 , f 2 ; f 3 , f 4 ) = I( f 1 , f 2 ) .I( f 3 , f 4 ) . 
∗I( f 1 + f 2 ; f 3 + f 4 ) (3) 

If the computational complexity of the Fourier transform of an im- 

age with size ( N × N ) is O ( N × N ), so the computational complexity 

of the estimation of the 4D bispectrum is O (N × N) 3 = O (N 

6 ) . This 

requires enormous amount of operations and time. 

To reduce the computational complexity, we use the Radon 

transform which decomposes a 2D image into a set of 1D projec- 

tions at θi =1 ... M 

angles. The radon transform r ( d, θ ) of an image 

i(x,y) is defined as: 

r(d, θ ) = 

∫ ∫ 
i (x, y ) δ(r − x cos θ − y sin θ ) d xd y (4) 

Where δ(.) is the Dirac function and r is the perpendicular distance 

from a line to the origin. 

For each projection p i = r(d, θi ) of length N we compute the 

averaged bispectrum as: 

B i ( f 1 , f 2 ) = P i ( f 1 ) .P i ( f 2 ) . 
∗P i ( f 1 + f 2 ) (5) 

where B i ( f 1 , f 2 ) is the bispectrum of the i th projection. 

In this case the estimation of the bispectrum needs O ( M ) O ( N 

3 ) 

operations. 

The use of Radon transform in the estimation of the bispectrum 

do not just reduce the computational complexity but also extend 

the aforementioned properties of the bispectrum to 2D data as in 

the case of textures where: 

• Due to the invertibility of the Radon transform, there is no loss 

of the image information. 
• The rotation of the image results in a circular shift of the pro- 

jections along θ . Therefore computing the bispectrum after ap- 

plying Radon transform produce a rotation invariant. 
• The radon transform preserves the directional information and 

the pixel intensities of the image. 

3.2. Phase recovery 

The second step of our algorithm consists on recovering the 

phase information from the bispectrum of each projection. Since 

B ( f 1 , f 2 ) and P ( f ) are complex values, Eq. (5) can be written other- 

wise in terms of magnitude (real part) and phase (imaginary part) 

as: 

| B ( f 1 , f 2 ) | .e iψ( f 1 , f 2 ) = | P i ( f 1 ) | .e iφ( f 1 ) . | P i ( f 2 ) | .e iφ( f 2 ) . 

∗| P i ( f 1 + f 2 ) | .e −iφ( f 1 + f 2 ) 
(6) 

Hence, we obtain the following equation which contains the object 

phase where: 

e iψ( f 1 , f 2 ) = e i [ φ( f 1 )+ φ( f 2 ) −φ( f 1 + f 2 )] (7) 

Accordingly, Biphase (bispectrum phase) could be defined as 

the sum of three Fourier phases φ by: 

ψ( f 1 , f 2 ) = φ( f 1 ) + φ( f 2 ) − φ( f 1 + f 2 ) (8) 

The relation above represents a recursive equation. If the phase 

of the object at f 1 and f 2 are known, the phase at ( f 1 + f 2 ) can be 

calculated using: 

φ( f 1 + f 2 ) = φ( f 1 ) + φ( f 2 ) − ψ( f 1 , f 2 ) (9) 

As described above we determine the Fourier phase recovered 

from bispectrum for each projection of the image. 
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