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a b s t r a c t 

We propose a guiding network to assist with training a deep convolutional neural network (DCNN) to 

improve the accuracy of pedestrian detection. The guiding network is adaptively appended to the pedes- 

trian region of the last convolutional layer; the guiding network helps the DCNN to learn the convolu- 

tional layers for pedestrian features by focusing on the pedestrian region. The guiding network is used 

only for training, and therefore does not affect the inference speed. We also explore other factors such as 

proposal methods and imbalance of training samples. By adopting a guiding network and tackling these 

factors, our method yields a new state-of-the-art detection accuracy on the Caltech Pedestrian dataset 

and presents competitive results with the state-of-the-art methods on the INRIA and KITTI datasets. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The goal of pedestrian detection is to draw bounding boxes that 

tightly enclose pedestrians in a given image. A single bounding box 

should be found for each pedestrian; i.e., the detection task in- 

cludes localization and classification. Localization specifies the po- 

sitions of bounding boxes, and classification gives confidence re- 

garding whether or not the box includes a pedestrian. Scanning 

an image in a sliding window fashion is a well-known approach 

to resolve this detection task. To detect various sizes of pedes- 

trian, the scanning process must be conducted at every position 

and at multiple scales in an image. The AdaBoost-based algorithms 

[9,17,18,23,35] conducted in this fashion have achieved consider- 

able success due to their fast processing speed. However, design- 

ing good hand-crafted features which might improve the detection 

accuracy is a difficult task. 

Deep convolutional neural networks (DCNNs) have achieved ac- 

curate pedestrian detection [20,26] . DCNNs are too computation- 

ally expensive to be practical to scan an image in a sliding win- 

dow fashion; therefore, the proposal-and-classification strategy is 

applied: first candidate (proposal) windows (bounding boxes) are 

extracted by a fast pedestrian detection method (e.g., AdaBoost- 

based method), then the windows are classified by DCNNs. This 

strategy originated from the R-CNN [13] in object detection, and 

achieves a good trade-off between the strong discriminative power 

and large computational burden of DCNNs. To improve detection 
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accuracy, most work focused on designing a unique DCNN or on 

combining multiple DCNNs. DeepParts [26] used an ensemble of 

DCNNs (one for each body part), and SA-FastRCNN [20] combined 

two subnetworks to learn two different features depending on the 

instance scale (one for large and one for small). In this paper, we 

argue that a single typical DCNN can be acceptably discriminative 

if trained appropriately. 

We propose a novel guiding network to assist with training the 

baseline network. The guiding network is adaptively appended to 

the region on the last convolutional layer of the baseline network; 

the region corresponds to the actual pedestrian of an input sam- 

ple image. The underlying idea of the guiding network is to fo- 

cus on the actual pedestrian region. We gather the training sam- 

ples from the bounding boxes extracted by a proposal method; the 

samples are extracted from images by cropping the candidate re- 

gion for a pedestrian with some contextual extension ( Fig. 1 ). For 

contextual extension, all pixels surrounding the proposed bound- 

ing box with a specific scale ratio are added. Because the proposal 

methods do not consider the localization problem, a pedestrian is 

situated in an arbitrary position and scale in the proposal sam- 

ple image that includes some biased background (first six images 

in Fig. 1 ). The biased background is caused by miscellaneous ob- 

jects such as cars and trees, which often appear concurrently with 

pedestrians. This bias reduces the detection accuracy. For example, 

we have observed in experiments that car parts are often classified 

as pedestrians ( Section 4.4 ). Focusing on the actual pedestrian re- 

gion helps to reduce this bias by forcing the convolutional layers to 

learn the features of pedestrians. Our guiding network also focuses 

adaptively on the pedestrian-like pattern in the negative proposal 

image during the training process; the pedestrian-like pattern is a 
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Fig. 1. Some proposal sample images which include some context around the pro- 

posed bounding boxes (dotted green rectangles). The red rectangles indicate the 

ground-truth bounding boxes. The sizes of the proposed bounding box and the ex- 

tended box are 100 × 41 and 128 × 64, respectively. The first six images include 

pedestrians and the last two images do not. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

background pattern that might be misinterpreted as a pedestrian 

(last two images in Fig. 1 ). In this way, the guiding network helps 

to learn discriminative features for pedestrians. The guiding net- 

work is trained together with the baseline network by optimizing 

the combined loss function of both networks. The guiding network 

is used only during training; it is not used during testing, so it does 

not affect the inference speed. 

Other factors that affect the detection accuracy include imbal- 

ance between the number of positive and negative samples in 

training data, and the proposal methods for extracting candidate 

bounding boxes. We explore these factors to improve the detection 

accuracy ( Section 3 ). 

Our main contributions are: 

• We propose a novel guiding network to assist with learning the 

baseline network that performs classification and localization 

for pedestrian detection. 
• We explore other factors such as proposal methods and the 

problem of imbalance between the number of positive and neg- 

ative samples. 
• We evaluate our method on three benchmarks: Caltech, INRIA 

and KITTI. We achieve a new state-of-the-art detection accu- 

racy on the Caltech Pedestrian dataset and competitive results 

on the INRIA and KITTI datasets. The inference speed is fairly 

fast because our method does not increase the complexity of 

the network architecture. 

The rest of this paper is organized as follows. Some work re- 

lated to ours is reviewed in Section 2 . The proposed methods are 

described in detail in Section 3 . Experimental results that show the 

superiority of our method are given in Section 4 . 

2. Related work 

AdaBoost has been widely used in pedestrian detection due 

to good classification accuracy and fast processing. Various hand- 

crafted features have been designed for AdaBoost; e.g., aggre- 

gated channel feature (ACF) [9] , locally decorrelated channel fea- 

ture (LDCF) [23] , aggregated channel comparison feature (ACCF) 

[17] , filtered channel feature (FCF) [35] and effective comparison 

feature (ECF) [18] . ACF aggregates 10 channels of the candidate 

pedestrian sample: three of LUV, six of gradient orientations, and 

one of gradient magnitude. The 10 channels can be transformed 

by local decorrelation (LDCF), or by various filter banks (FCF) to 

increase its discriminative power. ACCF is generated by compar- 

ing two values of random positions in the same channel and ECF 

is generated by selecting effective features among the comparison 

features. We used ACF and ECF as proposal methods in this paper. 

Convolutional channel features (CCF) [30] takes features learned by 

DCNN and uses them for AdaBoost learning. 

DCNN-based pedestrian detection algorithms have achieved 

good detection accuracy. Hosang et al. [15] demonstrated an R-CNN 

pipeline with various proposal methods and variants of AlexNet 

[19] . TA-CNN [27] trained a DCNN for pedestrian detection jointly 

with auxiliary semantic tasks that include pedestrian attributes 

and scene attributes. Our guiding network is similar to TA-CNN 

in that an additional network assists in the original task, but we 

do not use external information such as semantic labels. Deep- 

Parts [26] addressed the occlusion problem by using an ensem- 

ble of DCNNs, but the computational cost is very high. CompACT- 

Deep [4] is a complexity-aware cascaded detector that combines 

various hand-crafted features with DCNN features seamlessly. A 

scale-aware pedestrian detection method based on Fast R-CNN (SA- 

FastRCNN) [20] combines two subnetworks (one for large scales 

and one for small scales) in a soft way to solve the scale problem. 

Hu et al. [16] further improved the detection accuracy by com- 

bining various information such as hand-crafted features, DCNN 

mid-layer features, semantic segmentation, and optical flows, then 

merging the information in the final scoring stage. 

3. The proposed method 

In this section, we describe our pedestrian detection method. 

We use a proposal-and-classification approach to reduce the com- 

putational burden of detecting pedestrians on multiple scales. To 

extract proposal samples, we use fast pedestrian detectors based 

on AdaBoost algorithm such as ACF [9] and ECF [18] . The candidate 

regions with some context are cropped from the image and resized 

to fixed size (128 × 64 in our system) while preserving the aspect 

ratio of bounding boxes. Then the regions are used as input to our 

DCNN for accurate classification and localization. 

3.1. Baseline DCNN architecture 

Our baseline network takes a proposal sample x ∈ R 

128 ×64 ×3 as 

an input, and gives the classification score of pedestrian and the 

bounding box regression offset. The network consists of five con- 

volutional blocks, two fully-connected layers, and two output lay- 

ers for classification and localization. The five convolutional blocks 

are the same as those of the VGG-16 network [25] , in which each 

convolutional block consists of two or three 3 × 3 convolutional 

layers, rectified linear unit layers, and a max-pooling layer. These 

convolutional layers produce a feature map of size 4 × 2 × 512. 

The feature map goes through a chain of two fully-connected lay- 

ers of dimension 2048 followed by two split output layers. The first 

output layer is the binary classification layer (sample does/does not 

contain a pedestrian); the second output layer is the bounding box 

regression layer. This output layer architecture is taken from Fast 

R-CNN [12] . The loss L B of the baseline network can be defined as 

L B = L cls 
B + L loc 

B , (1) 

where L cls 
B 

is classification loss (2-way softmax-log loss) and L loc 
B 

is 

localization loss (smooth L 1 loss). 

We used three values t = (t x , t y , t s ) for bounding box regres- 

sion offset where ( t x , t y ) denotes scale-invariant translation in each 

direction and t s is a scale transformation; in this context, the 

regression is the transformation of a proposed bounding box to 

the regressed (localized) bounding box or to the target ground- 

truth bounding box. The bounding box aspect ratio of a pedestrian 

does not vary considerably, unlike other objects (e.g., aspect ra- 

tios of cars vary greatly with viewpoint); the mean aspect ratio 

of a pedestrian is 0.41 [10] . Therefore, to compute bounding box 

regression offset we used a single scale transformation factor t s in- 

stead of two ( t w , t h ) width and height transformation. To adjust the 

ranges of L cls 
B 

and L loc 
B 

, we normalized the ground-truth localization 

targets to have zero mean and unit variance, as in Fast R-CNN [12] . 
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