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a b s t r a c t 

Non-negative matrix factorization (NMF) has been widely applied in information retrieval and computer 

vision. However, its performance has been restricted due to its limited tolerance to data noise, as well 

as its inflexibility in setting regularization parameters. In this paper, we propose a novel sparse matrix 

factorization method for data representation to solve these problems, termed Adaptive Total-Variation 

Constrained based Non-Negative Matrix Factorization on Manifold (ATV-NMF). The proposed ATV can 

adaptively choose the anisotropic smoothing scheme based on the gradient information of data to denoise 

or preserve feature details by incorporating adaptive total variation into the factorization process. Notably, 

the manifold graph regularization is also incorporated into NMF, which can discover intrinsic geometrical 

structure of data to enhance the discriminability. Experimental results demonstrate that the proposed 

method is very effective for data clustering in comparison to the state-of-the-art algorithms on several 

standard benchmarks. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Matrix Factorization (MF) plays the fundamental role in various 

emerging applications ranging from information retrieval to data 

mining [1] . It typically adopts a sparse representation to obtain 

low-dimensional matrix, which can deal with many classical clas- 

sification and clustering problems efficiently and robustly [2–4] . 

In order to avoid the curse of dimensionality, different forms 

of dimensionality reduction schemes like Principal Component 

Analysis (PCA), ISOMAP [5] , Locally Linear Embedding (LLE) [6] , 

Laplacian Eigenmap [7] and Isometric Projection [8] . NMF [9] in- 

corporates the non-negativity constraint to achieve a parts-based 

representation. 

NMF allows only additive, not subtractive, combination of 

the original data, and which is effective to capture the underly- 

ing structure of the data combining non-negative constraints in a 

parts-based low dimensional space. Usually, the rank of the NMF is 

generally chosen so that the matrix factorization can be regarded 

as a compressed form of the data [9,10] . NMF has been widely 

used for clustering [11,12] , face recognition [13–15] and image or 

data analysis [2,16] . To overcome the difficulty in modeling the 
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intrinsic geometrical structure, Manifold learning [4–6,17,18] has 

been introduced into NMF. For instance, Cai et al. [19] presented 

a graph regularized NMF (GNMF) by adding a graph manifold 

term to NMF, While promising, manifold-based NMF is typically 

sensitive to data noise. 

Since NMF model does not consider noise signal, its perfor- 

mance has been restricted due to the fact that it is very hard 

to determine appropriate regularization parameters. In order to 

resolve these problems, we will add an adaptive total variation 

regularization item to NMF model. It is worth noting that Total 

variation (TV), first introduced by Rudin et al. [20] , is effective for 

piecewise constant reconstruction, thus can preserve the boundary 

of large objects well. Since then TV regularization has been widely 

used for denoising tasks in image processing, computer vision 

and image reconstruction, such as data representation [21] , face 

recognition [15,22] . To this end, total variation scheme has been 

proposed to handle data noise by combining TV term [23,24] . 

However, TV based NMF cannot well discover and reveal the 

intrinsic geometrical and structure information of data and it is 

difficult to fix the TV regularization parameter of TV term. 

In this paper, we present a novel NMF scheme that correctly 

handles the data noise as well as modeling the intrinsic geometric 

structure of data, terms Adaptive Total-Variation Constrained 

based Non-negative Matrix Factorization on Manifold (ATV-NMF). 

First, in order to discover intrinsic geometrical structure, we 
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incorporate the graph regularization to NMF. Second, the Adaptive 

Total-Variation (ATV) regularization is incorporated to choose 

adaptively the anisotropic smoothing scheme based on the data 

gradient to denoise or preserve adaptively the feature details. 

ATV also avoids choosing the regularization parameter to enhance 

the discrimination ability. Finally, we present a novel iterative 

update rule that achieve ATV-NMF. Experimental results show that 

the proposed method is better compared to the state-of-the-art 

schemes for data clustering. 

The rest of this paper is organized as follows: In Section 2 , we 

propose the ATV-NMF on manifold method. Section 3 presents 

experimental results and Section 4 gives conclusions and future 

work. 

2. ATV-NMF On manifold 

In this section, we first describe the basic idea of ATV method. 

In principle, ATV and graph regularization is introduced into NMF 

to preserve edge or details, as well as to discover and enhance the 

intrinsic geometrical data structure to improve the discriminabil- 

ity. As for data clustering, the database is regarded as an m × n 

matrix V , each column of which contains m non-negative values 

of one of the n images. Then the task of ATV-NMF is to construct 

approximate factorizations of the form V = W H, where W and H 

are respectively m × r and r × n matrix factors, and r denotes the 

rank of the factorization. 

2.1. Adaptive total-variation 

Our ATV-NMF model is inspired by the adaptive total variation 

regularization proposed in [25] so that the proposed model can 

adaptively choose the anisotropic smoothing scheme based on the 

gradient information of data to denoise or preserve feature details, 

which can be defined as: 

E(H) = || H|| AT V (1) 

where E is the energy function of H , || H|| AT V = ∫ 
�

1 
p(x,y ) 

|∇H| p(x,y ) d xd y denotes the adaptive TV regulariza- 

tion term, p(x, y ) = 1 + 

1 
1+ |∇H| 2 , 1 < p ( x, y ) < 2, (∇H)(i, j) = 

((∂ x H)(i, j) , (∂ y H)(i, j)) is a discrete gradient form with ( ∂ x H )( i, j ) 

and ( ∂ y H )( i, j )), given as follows: 

(∂ x H)(i, j) = 

{
H(i + 1 , j) − H(i, j) i f i < r 

H(1 , j) − H(r, j) i f i = r 

(∂ y H)(i, j) = 

{
H(i, j + 1) − H(i, j) i f j < n 

H(i, 1) − H(i, n ) i f j = n 

The adaptive TV regularization including a diffusion coefficient 
1 

|∇H| 2 −p in Eq. (8) , which is used to control the speed of the 

diffusion based on the gradient information. For edges, |∇H| 2 −p 

has big values, the 1 
|∇H| 2 −p is small and the diffusion is very 

weak along the edge directions, which helps preserve edges. In a 

smooth region, |∇H| 2 −p has small values, the 1 
|∇H| 2 −p is big and 

the diffusion is strong, which helps in denoising. In addition, the 

ATV model has some fundamental properties, which has numer- 

ical stability solution, can avoid the staircase effect, and is able 

to preserve or enhance finer scale data features, such as edges or 

textures, while denoising [25] . 

2.2. Multiplicative updating rules 

Using the ATV as the regularization term, the refined ATV-NMF 

model is designed by solving the following objective function: 

O AT V −NMF = || V − W H|| 2 F + λT r(HLH 

T ) 

+2 || H|| AT V . s.t. W ≥ 0 , H ≥ 0 (2) 

where ‖ · ‖ F denotes the Frobenius norm, λ≥ 0 is a regularization 

parameter, Tr (.) denotes the trace of a matrix, S is the weight 

matrix whose entry S ij measures the similarity between each 

vertex pair ( v i , v j ), D is a diagonal matrix with column sums of S 

as its diagonal entries. i.e., D i j = 

∑ n 
i =1 S i j , L = D − S is called graph 

Laplacian matrix [26] . 

Since the objective function O AT V −NMF in Eq. (2) is not convex 

in W and H , we therefore resort to an iterative updating algorithm 

to obtain an approximate optimal solution of O AT V −NMF . In order to 

obtain the solution of the objective function O AT V −NMF in Eq. (2) , 

we need to find an iterative updating algorithm to achieve the 

minimization of O AT V −NMF by gradient descent algorithm [27] . The 

gradient of the objective function O AT V −NMF with respect to W and 

H are given as follows: 

∂O AT V −NMF 

∂W i,l 

= −2(V H 

T − W H H 

T ) i,l (3) 

∂O AT V −NMF 

∂H l, j 

= −2 

(
W 

T V − W 

T W H −λH L + di v 
( ∇H 

|∇H | 2 −p 

))
l, j 

(4) 

The additive update rules for problem (2) by Eqs. (3) and 

(4) can be obtained as follows: 

W i,l ← W i,l + ξi,l (V H 

T − W H H 

T ) i,l (5) 

H l, j ← H l, j + ηl, j 

(
W 

T V − W 

T W H − λH L + di v 
( ∇H 

|∇H | 2 −p 

))
l, j 

(6) 

where ξi,l = 

W i,l 

(W H H T ) i,l 
and ηl, j = 

H l, j 

(W 

T W H + λH D ) l, j 
are the step sizes 

of the updates, and the multiplicative updating rules can be 

formulated as follows: 

W i,l ← W i,l 

(
V H 

T 
)

i,l (
WH H 

T 
)

i,l 

(7) 

H l, j ← H l, j 

(W 

T V + λHS + di v ( ∇H 
|∇H| 2 −p )) l, j 

(W 

T W H + λHD ) l, j 

(8) 

where div denotes the divergence, i.e., di v = ( ∂ 
∂x 

, ∂ 
∂y 

) , ∇H = 

(∂ x H, ∂ y H) denotes the gradient, and |∇H| = 

√ 

(∂ x H) 2 + (∂ y H) 2 is 

the norm of the gradient. The similar form of the Eq. (8) can be 

found in [22] , and the discrete form of the di v ( ∇H 
|∇H| 2 −p ) can also 

be found based on the operator of the divergence and the gradient 

by using total variation principal [25] . The derivation of Eq. (8) is 

given as belows. 

Note that Eq. (6) is the additive update rule, where 

ηl, j = 

H l, j 

(W 

T W H + λH D ) l, j 
. Let L = D − S be the graph Laplacian ma- 

trix [26] , thus we have: 

H l, j ← H l, j + ηl, j 

(
W 

T V − W 

T W H − λHL + di v 
( ∇H 

|∇H| 2 −p 

))
l, j 

H l, j ← H l, j + ηl, j 

(
W 

T V − W 

T W H − λH(D − S) + di v 
( ∇H 

|∇H| 2 −p 

))
l, j 

H l, j ← H l, j + ηl, j 

(
−W 

T W H − λHD + W 

T V + λHS + di v 
( ∇H 

|∇H| 2 −p 

))
l, j 

H l, j ← H l, j + ηl, j (−W 

T W H − λHD ) l, j + ηl, j 

(
W 

T V + λHS + di v 
( ∇H 

|∇H| 2 −p 

))
l, j 

H l, j ← ηl, j 

(
W 

T V + λHS + di v 
( ∇H 

|∇H| 2 −p 

))
l, j 



Download English Version:

https://daneshyari.com/en/article/4970002

Download Persian Version:

https://daneshyari.com/article/4970002

Daneshyari.com

https://daneshyari.com/en/article/4970002
https://daneshyari.com/article/4970002
https://daneshyari.com

