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a b s t r a c t 

Manifold regularization (MR) provides a powerful framework for semi-supervised classification (SSC) 

learning. It imposes the smoothness constraint over a constructed manifold graph, and its performance 

largely depends on such graph. However, 1) The manifold graph is usually pre-constructed before classifi- 

cation, and fixed during the classification learning process. As a result, independent with the subsequent 

classification, the graph does not necessarily benefit the classification performance. 2) There are param- 

eters needing tuning in the graph construction, while parameter selection in semi-supervised learning 

is still an open problem currently, which sets up another barrier for constructing a “well-performing”

manifold graph benefiting the performance. To address those issues, we develop a novel semi-supervised 

manifold regularization with adaptive graph (AGMR for short) in this paper by integrating the graph 

construction and classification learning into a unified framework. In this way, the manifold graph along 

with its parameters will be optimized in learning rather than pre-defined, consequently, it will be adap- 

tive to the classification, and benefit the performance. Further, by adopting the entropy and sparse con- 

straints respectively for the graph weights, we derive two specific methods called AGMR_entropy and 

AGMR_sparse, respectively. Our empirical results show the competitiveness of those AGMRs compared to 

MR and some of its variants. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

In many real applications, unlabelled data can be easily and 

cheaply collected, while the acquisition of labelled data is usually 

quite expensive and time-consuming, especially involving manual 

effort, e.g., in web page recommendation and spam email detec- 

tion. Consequently, semi-supervised classification, which exploits a 

large amount of unlabelled data jointly with the limited labelled 

data for classification learning, has attracted intensive attention 

during the past decades [7,25,26,28] . 

Generally, semi-supervised classification methods attempt to 

exploit the intrinsic data distribution information disclosed by the 

unlabeled data in learning. To exploit the unlabeled data, some as- 

sumption should be adopted for learning. Two common assump- 

tions in semi-supervised classification are the cluster assumption 

and the manifold assumption [7,19,26] . The former assumes that 

similar instances are likely to share the same class label, thus 
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guides the classification boundary passing through the low den- 

sity region between clusters. The latter assumes that the data are 

resided on some low dimensional manifold represented by a Lapla- 

cian graph, and similar instances should share similar classifica- 

tion outputs according to the graph. Almost all off-the-shelf semi- 

supervised classification methods adopt one or both of those as- 

sumptions explicitly or implicitly [7,25] . For instance, the large 

margin semi-supervised classification methods, such as Transduc- 

tive Support Vector Machine (TSVM) [15] , semi-supervised SVM 

(S3VM) [11] and their variants [8,17] , adopt the cluster assump- 

tion. The graph-based semi-supervised classification methods, such 

as label propagation [4,27] , graph cuts [5] and manifold regulariza- 

tion (MR) [3] , adopt the manifold assumption. 

The graph-based semi-supervised classification methods are 

mainly transductive ones, except MR. Although transductive meth- 

ods have specific applications, many real tasks need predicting un- 

seen instances, thus need inductive methods. As a result, as an 

inductive graph-based semi-supervised classification method, MR 

has attracted much attention and applied in many learning tasks 

such as image retrieval [14] and web spam identification [1] , etc. 

In this paper, we will concentrate on the MR framework [3] . 

http://dx.doi.org/10.1016/j.patrec.2017.09.004 
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The learning process of MR includes two steps: First, a man- 

ifold graph is constructed to describe the manifold structure of 

instances, in which the graph nodes represent instances, and the 

weights represent the similarities between instances. Then, accord- 

ing to the manifold assumption, the smoothness constraint over 

the constructed graph is implemented in terms of regularization. 

The construction of manifold graph is critical for the performance 

of MR. Once a “well-performing” graph benefiting the subsequent 

classification is constructed, it can finally help boost the classifi- 

cation performance. Otherwise, it will not help the classification, 

or even hurt the performance. However, on one hand, the graph is 

usually defined in advance and kept fixed during the learning pro- 

cess. It is actually impossible for us to judge whether a graph is a 

“well-performing” graph in advance. As a result, it is really difficult 

to construct a “well-performing” graph before classification. On the 

other hand, there are parameters needing tuning in the manifold 

graph, whereas in semi-supervised learning with limited label in- 

formation, the parameter selection is still an open problem with 

no effective solution yet. It sets up another barrier for graph con- 

structing for MR in advance. As far as we know, the existing im- 

provements of MR either attempt to select the regularization pa- 

rameters [12] , or try to improve the efficiency of MR [23,21] , few 

researches have concentrated on graph construction up to now. Ac- 

tually, the graph learning issue is considered as a separate topic 

under research currently, although the adaptive graph construction 

has been studied in GoLPP [24] for dimension reduction, MR and 

its improvements mainly adopt a pre-constructed graph. 

To address the above two issues, we aim to develop a new MR 

framework for semi-supervised classification here by introducing 

an adaptive graph (AGMR for short). In AGMR, the construction of 

manifold graph is incorporated into the classification learning. In 

this way, the manifold graph along with its parameters can be au- 

tomatically adjusted in learning rather than specified in advance. 

The graph construction and classification learning are combined 

together, thus can be more likely to benefit each other. Further, by 

adopting the entropy and sparse constraints for the graph weights, 

respectively, we derive two specific methods called AGMR_entropy 

and AGMR_sparse, respectively. The implementation follows an al- 

ternating iterative strategy to optimize the decision function and 

the manifold graph, respectively. Each step in the iteration results 

in a closed-form solution, and its iterative convergence can theo- 

retically be guaranteed. Experiments on several real datasets show 

the competitive performance of AGMR compared with MR and its 

improvements with different graph constructed. 

The rest of this paper is organized as follows. Section 2 intro- 

duces the related works, Section 3 presents the proposed graph- 

adaptive MR framework, Section 4 gives the empirical results, and 

some conclusions are drawn in Section 5 . 

2. Related works 

Given labeled data X l = { x i } l i =1 
with the corresponding labels 

Y = { y i } l i =1 
, and unlabeled data X u = { x j } n j= l+1 

, where each x i ∈ R d 

and u = n - l . G = { w i j } n i, j=1 
is a pre-specified Laplacian graph over 

the whole dataset, where each weight w ij represents the similar- 

ity between the connected instances x i and x j . There are two ways 

for deciding whether x i and x j are connected. One is the k -nearest 

neighbor strategy, i.e., x i and x j are connected if x i is in the k - 

nearest neighbor of x j (or x j is in the k -nearest neighbor of x i ). The 

other is the ε-ball nearest neighbor strategy, i.e., x i and x j are con- 

nected when ‖ x i − x j ‖ 2 < ε. The weights over the graph describe 

the similarities between the connected instances, and can be spec- 

ified by several weighting strategies. For example, the 0–1 weight- 

ing, i.e., w ij = 1 if x i and x j are connected by an edge over the graph, 

the heat kernel weighing with w i j = e −
‖ x i −x j ‖ 2 

σ if x i and x j are con- 

nected, or the dot-product weighting with w i j = x T 
i 

x j if x i and x j 
are connected. 

After the construction of the manifold graph, the framework of 

MR can be formulated as follows with a decision function f ( x ), 

min 

f 

l+ u ∑ 

i, j=1 

w i j ( f ( x i ) − f ( x j )) 
2 + γ1 

l ∑ 

i =1 

V ( x i , y i , f ) + γ2 ‖ 

f ‖ 

2 
K (1) 

where V ( x i , y i , f ) is the loss function, such as the hinge loss 

max {0, 1- y i f ( x i )} for support vector machine (SVM), or the square 

loss ( y i − f ( x i )) 
2 for regularized least square classifier (RLSC), in 

this way, the MR framework naturally embodies the specific algo- 

rithms LapSVM and LapRLSC [3] . ‖ f‖ 2 
K 

is a regularization term for 

smoothness in the Reproducing Kernel Hilbert Space (RKHS). The 

third term guarantees the prediction smoothness over the mani- 

fold graph, which can be further written as 

l+ u ∑ 

i, j=1 

w i j ( f ( x i ) − f ( x j )) 
2 = 2 f T Lf (2) 

where f = [ f ( x 1 ), …, f ( x l + u )] T , and L is the graph Laplacian given by 

L = D - W, W is the weight matrix of graph G and D is a diagonal 

matrix with the diagonal component given by D ii = 

∑ n 
j=1 w i j . Ac- 

cording to the Representer theorem [3] , the minimizer of problem 

(1) has the form 

f ∗(x ) = 

∑ l+ u 
i =1 

αi K( x i , x ) (3) 

where K: X × X → R is a Mercer kernel (the bias of the decision func- 

tion can be omitted by augmenting each instance with a 1-valued 

element). 

3. Semi-supervised manifold regularization with adaptive 

graph (AGMR) 

3.1. Model formulation 

Given labeled instances X l = { x i } l i =1 
with the corresponding la- 

bels Y = { y i } l i =1 
, and unlabelled instances X u = { x j } n j= l+1 

, where 

each x i ∈ R d and u = n - l . The optimization problem of AGMR can 

be formulated as 

min 

f, w i j 

l+ u ∑ 

i, j=1 

w i j ( f ( x i ) − f ( x j )) 
2 

+ γ1 

l ∑ 

i =1 

( f ( x i ) − y i ) 
2 + γ2 ‖ 

f ‖ 

2 
K + ηR ( w i j ) 

s.t. 
∑ u 

j=1 w i j = 1 

w i j ≥ 0 

(4) 

The first three terms in the optimization function of (4) are the 

same with those in MR, R ( w ij ) is some constraint on the graph 

weights, and η is the regularization parameter. Different from MR 

seeking the decision function in learning, AGMR seeks both the 

decision function and the weights for the manifold graph. From 

the optimization problem in (4) , we can find that: 1) The mani- 

fold graph in MR is specified before classification, and fixed in the 

learning process. While in AGMR, the graph is actually optimized 

in the learning process along with its parameters; 2) In AGMR, we 

have 
∑ u 

j=1 w i j = 1 and w ij ≥ 0, in this way, each w ij actually reflects 

the probability that x i and x j should be in the same class; 3) With- 

out the constraint R ( w ij ) on each w ij , the solution for each w ij will 

degenerate to a trivial one, in which only one element is 1, and the 

remainder are all 0. 

Different constraints for the graph weights generate different 

models, thus yield different classification performance. In the fol- 

lowing, we will respectively use the entropy constraint and the 

sparse constraint for examples to develop new AGMR methods 

within the above framework. 
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