
Pattern Recognition Letters 95 (2017) 22–28

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

A CUDA-based hill-climbing algorithm to find irreducible testors from

a training matrix

Ivan Piza-Davila

a , Guillermo Sanchez-Diaz

b , ∗, Manuel S. Lazo-Cortes c ,
Luis Rizo-Dominguez

a

a Instituto Tecnologico y de Estudios Superiores de Occidente, Periferico Sur Manuel Gomez Morin 8585, Tlaquepaque, Jalisco, 45604, Mexico
b Universidad Autonoma del Estado de San Luis Potosi, Facultad de Ingenieria, Dr. Manuel Nava 8, San Luis Potosi, SLP, 78290, Mexico
c Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla, 72840, Mexico

a r t i c l e i n f o

Article history:

Received 9 November 2016

Available online 26 May 2017

Keywords:

Pattern recognition

Feature selection

Irreducible testors

CUDA

Hill climbing

a b s t r a c t

Irreducible testors have been used to solve feature selection problems. All the exhaustive algorithms re-

ported for the generation of irreducible testors have exponential complexity. However, several problems

only require a portion of irreducible testors (only a subset of all). The hill-climbing algorithm is the lat-

est approach that finds a subset of irreducible testors. So this paper introduces a parallel version of the

hill-climbing algorithm which takes advantage of all the cores available in the graphics card because it

has been developed on a CUDA platform. The proposed algorithm incorporates a novel mechanism that

improves the exploration capability without adding any extra computation at the mutation step, thus

increasing the rate of irreducible testors found. In addition, a Bloom filter is incorporated for efficient

handling of duplicate irreducible testors. Several experiments with synthetic and real data, and a com-

parison with other state-of-the-art algorithms are presented in this work.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Feature selection is a significant task in supervised classification

and other pattern recognition areas. It identifies those features that

provide relevant information for the classification process.

Feature selection is addressed in the Logical Combinatorial Pat-

tern Recognition approach [16] using Testor Theory [8] . The con-

cept of testor, applied to pattern recognition problems, was intro-

duced by Zhuravlev [6] . This concept has been extended in sev-

eral ways [8,23] . Ruiz-Shulcloper [17,18] introduced the characteri-

zation of irreducible testors -known as typical testors- and several

exhaustive algorithms for computing the whole set of irreducible

testors from a training matrix; these algorithms are very useful

particularly when object descriptions are defined in terms of nu-

meric and non-numeric features. The concepts of testor and irre-

ducible testor have also been used by V. Valev under the terms

descriptor and non-reducible descriptor, respectively [24] .

The computation of the whole set of irreducible testors us-

ing exhaustive algorithms requires exponential time [22] . However,

there are real-world problems which do not require the whole set

of irreducible testors, but only a subset. An example is the deter-

∗ Corresponding author.

E-mail address: guillermo.sanchez@uaslp.mx (G. Sanchez-Diaz).

mination of factors associated with Transfusion Related Acute Lung

Injury [21] . More of these real problems are explained in detail in

[19] .

1.1. Related work

There are some studies related to the development of

hardware-software platforms based on the Field Programmable

Gate-Array (FPGA) that generate irreducible testors from a train-

ing matrix [4,14,15] . Each of these platforms consists of the imple-

mentation on a FPGA of a known algorithm that finds irreducible

testors, taking advantage of the high degree of parallelism.

The CT-Ext algorithm described in [14] tends to be the fastest.

However, a fair comparison on CPU shows that this algorithm has

been surpassed by others [19,20] . Also, for a new matrix, the out-

come will be delayed until a new FPGA synthesis process is com-

pleted.

On the other hand, various hill-climbing algorithms have been

implemented using CUDA; these algorithms have been applied pri-

marily to address combinatorial optimization problems, in partic-

ular, the Traveling Salesman Problem [9,13] . Although these pro-

posed approaches try to find the near global optimum solution us-

ing an iterative random restart hill-climbing algorithm, this algo-

rithm focuses on finding many local optimum solutions, e.g., the

greatest possible subset of irreducible testors.

http://dx.doi.org/10.1016/j.patrec.2017.05.026

0167-8655/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.patrec.2017.05.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2017.05.026&domain=pdf
mailto:guillermo.sanchez@uaslp.mx
http://dx.doi.org/10.1016/j.patrec.2017.05.026

I. Piza-Davila et al. / Pattern Recognition Letters 95 (2017) 22–28 23

This work is based on a hill-climbing algorithm (denoted HC),

that was successfully adapted to find a subset of irreducible testors

[19] , as well as on its parallel version [11] (denoted PHC), which

works on multicore processors. The goal of both algorithms is to

iteratively find irreducible testors across the search space, with-

out building all the possible combinations of features. However,

when processing training matrices made up of hundreds of rows

and features, HC may take hours to finish; PHC reduces the ex-

ecution time proportionally to the number of threads employed,

which should correspond to the number of cores available. Unfor-

tunately, the number of cores available on current multiprocessors

is still very limited: no higher than eight. In many of these pro-

cessors, half of the cores are not actually physical, which results

in a loss of performance. Workstations provide a higher number of

cores per processor, typically sixteen cores and two processors, but

their prices are still high.

1.2. General-purpose computing on graphics processing units

General-purpose GPU computing [10] , or GPGPU, is the use of

a GPU to do general-purpose scientific and engineering computing.

One recent application for GPGPU is the evaluation of solutions for

combinatorial optimization problems using metaheuristics [3,25] .

Given a set of candidate solutions, the GPU can be used to evaluate

each one in parallel.

Following this approach, we present a CUDA-based version of

HC, hereafter denoted CHC, that takes advantage of all the cores

available on the graphics card.

1.3. Contributions

The contributions of CHC with respect to PHC are the following:

1. The adaptation of the hill-climbing algorithm for running on a

Graphics Processing Unit with support for hundreds of cores,

taking into consideration some limitations of GPU program-

ming, namely, limited resources and time spent in data transfer

between host and device memories.

2. A more efficient mechanism for picking random features to mu-

tate, which increases the exploration capability and reduces the

number of calculations on the GPU.

3. A more efficient mechanism to handle repetitive irreducible

testors. In many data sets, this single process might take longer

than the hill-climbing algorithm itself.

2. Problem statement

For a better understanding of this paper, this section provides

some definitions and notations related to irreducible testors. They

were introduced in [18] and [2] .

Let U be a set of objects described in terms of n features R =

{ x 1 , x 2 , · · · , x n } . Let { O 1 , O 2 , ���, O m

} ⊂ U , a set containing m objects,

each one belonging to a class K i ∈ { K 1 , K 2 , ���, K c }. We call training

matrix (denoted TM) to the matrix representation of this set, where

the i th row is a description of O i in terms of the features in R .

Let DM be a dissimilarity matrix where the rows are obtained

from a feature-by-feature comparison between every pair of ob-

jects belonging to different classes, setting 0 if the values of the

compared features are similar, and setting 1, otherwise.

Let T ⊆ R be a subset of features. DM

T denotes the sub-matrix

obtained from DM considering only the features belonging to T .

Definition 1. Let p be a row of DM

T ; we say that p is a zero row if

it contains only zeros.

Definition 2. T is a testor of TM , if there is no zero row in DM

T

Definition 3. Let T ⊆ R and x i ∈ T. x i is called a non-removable fea-

ture of T if the number of zero rows in DM

T −{ x i } is greater than in

DM

T . Otherwise x i is called a removable feature of T .

Definition 4. A testor T is denominated an irreducible testor of TM

if every feature x i ∈ T is a non-removable feature of T . It means

that T is an irreducible testor if no subset of T is a testor.

Definition 5. Let p and q be two rows of DM . We say that p is a

sub-row of q if: ∀ j [q j = 0 ⇒ p j = 0] and ∃ i [p i = 0 AND q i = 1] ; i,

j ∈ {1, ���, n }.

Definition 6. A row p of DM is called basic if no row in DM is a

sub-row of p . The sub-matrix of DM containing all its basic rows

(without repetitions), is called a basic matrix (denoted BM).

Irreducible testors may be computed using either DM or BM as

stated in the following proposition.

Proposition 1. Let DM be a dissimilarity matrix and BM its corre-

sponding basic matrix, and let ψ

∗(DM) and ψ

∗(BM) be the set of irre-

ducible testors of DM and BM respectively; then ψ

∗(DM) = ψ

∗(BM) .

Proof. Let R DM

and R BM

be the set of rows in DM and BM re-

spectively. Let ψ(DM) and ψ(BM) be the set of all testors of DM

and BM respectively. Let T ∈ ψ(DM); then DM

T has no zero rows,

and since R BM

⊆ R DM

then BM

T has no zero rows either, and T

∈ ψ(BM). Now let T 	∈ ψ(DM), meaning that DM

T has at least one

zero row (a i)
T . If a i is a basic row, then a i ∈ R BM

and T 	∈ ψ(BM).

Alternatively, if a i is not a basic row, then it has at least one sub-

row among the rows in R BM

, and by definition all sub-rows of a i
(even those in R BM

) have zeros in all columns in which a i has a

zero. Therefore BM

T has at least one zero row and T 	∈ ψ(BM). Con-

sequently ψ (DM) = ψ (BM) , and from Definition 4 it follows that

ψ

∗(DM) = ψ

∗(BM) . �

Since BM has fewer rows but the same irreducible testors as

DM , this result explains why most algorithms for computing irre-

ducible testors are run on basic matrices instead of dissimilarity

matrices.

In this work, we use concepts and definitions that have been

developed in the Logical Combinatorial Pattern Recognition ap-

proach [16] . However, there are other equivalent definitions and

concepts of testor and irreducible testor [6,24] .

3. CUDA-based hill-climbing algorithm (CHC)

3.1. Hill-climbing algorithm

The hill-climbing algorithm is a local-search stochastic method,

where a candidate solution is mutated across the search space [7] .

The mutation is performed over a combination of features, called

individual, according to certain characteristics of the combination

which enables it to climb up the hill until reaching a local opti-

mum: an irreducible testor [5] .

In [11] , a parallel version of the hill-climbing algorithm is in-

troduced; this version is useful for finding irreducible testors from

a training matrix. Each CUDA thread runs an instance of this algo-

rithm, during which, an individual is mutated over G generations

accordingly to its current fitness value [See Fig. 2]. The seed used

for each thread to randomly create the first individual, is calculated

as S + T , where S is the seed passed by the kernel function and T

is the identifier of the current thread.

The mutation methods randomly select a feature to add or re-

move. Instead of calculating random values all the time, as in [11] ,

a circular list is built a priori, containing a random permutation

of indices in the range [1 , . . . , F] , one per CUDA thread. Thus, the

mutation method only selects the next element from this permu-

tation. In addition to considerably reducing the number of com-

Download English Version:

https://daneshyari.com/en/article/4970016

Download Persian Version:

https://daneshyari.com/article/4970016

Daneshyari.com

https://daneshyari.com/en/article/4970016
https://daneshyari.com/article/4970016
https://daneshyari.com

