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a b s t r a c t 

Many machine learning applications such as in vision, biology and social networking deal with data in 

high dimensions. Feature selection is typically employed to select a subset of features which improves 

generalization accuracy as well as reduces the computational cost of learning the model. One of the cri- 

teria used for feature selection is to jointly minimize the redundancy and maximize the relevance of the 

selected features. In this paper, we formulate the task of feature selection as a one class SVM problem in 

a space where features correspond to the data points and instances correspond to the dimensions. The 

goal is to look for a representative subset of the features (support vectors) which describes the bound- 

ary for the region where the set of the features (data points) exists. This leads to a joint optimization of 

relevance and redundancy in a principled max-margin framework. Additionally, our formulation enables 

us to leverage existing techniques for optimizing the SVM objective resulting in highly computationally 

efficient solutions for the task of feature selection. Specifically, we employ the dual coordinate descent 

algorithm (Hsieh et al., 2008), originally proposed for SVMs, for our formulation. We use a sparse repre- 

sentation to deal with data in very high dimensions. Experiments on seven publicly available benchmark 

datasets from a variety of domains show that our approach results in orders of magnitude faster solu- 

tions even while retaining the same level of accuracy compared to the state of the art feature selection 

techniques. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Many machine learning problems in vision, biology, social net- 

working and several other domains need to deal with very high 

dimensional data. Many of these attributes may not be relevant 

for the final prediction task and act as noise during the learning 

process. A number of feature selection methods have already been 

proposed in the literature to deal with this problem. These can be 

broadly categorized into filter based, wrapper based and embed- 

ded methods. 

In filter based methods, features (or subset of the features) are 

ranked based on their statistical importance and are oblivious to 

the classifier being used [7,11] . Wrapper based methods select sub- 

set of features heuristically and classification accuracy is used to 

estimate the goodness of the selected subset [10] . These meth- 

ods typically result in good accuracy while incur high computa- 

tional cost because of the need to train the classifier multiple num- 

ber of times. In the embedded methods, feature selection criteria 

is directly incorporated in the objective function of the classifier 

[16,17] . Many filter and wrapper based methods fail on very high 
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dimensional datasets due to their high time and memory require- 

ments, and also because of inapplicability on sparse datasets [7,17] . 

In the literature, various max-margin formulation had been de- 

veloped for many applications [1,6,9,19] . Recently, we have pro- 

posed a hard margin primal formulation for feature selection us- 

ing quadratic program (QP) slover [12] . This approach jointly min- 

imizes redundancy and maximizes relevance in a max-margin 

framework. We have formulated the task of feature selection as 

a one class SVM problem [14] in the dual space where f eatures 

correspond to the data points and instances correspond to the di- 

mensions. The goal is to search for a representative subset of the 

features (support vectors) which describes the boundary for the 

region in which the set of the features (data points) lies. This is 

equivalent to searching for a hyperplane which maximally sepa- 

rates the data points from the origin [14] . 

In this paper, we have extended the hard-margin formulation to 

develop a general soft-margin framework for feature selection. We 

have also modified the primal and dual formulations. We present 

the dual objective as unconstrained optimization problem. We em- 

ploy the Dual Coordinate Descent (DCD) algorithm [8] for solving 

our formulation. The DCD algorithm simultaneously uses the infor- 

mation in the primal as well as in the dual to come up with a very 

fast solver for the SVM objective. In order to apply DCD approach, 

our formulation has been appropriately modified by including an 
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additional term in the dual objective, which can be seen as a regu- 

larizer on the feature weights. The strength of this regularizer can 

be tuned to control the sparsity of the selected features weights. 

We adapt the liblinear implementation [3] for our proposed frame- 

work so that our approach is scalable to data in very high dimen- 

sions. We also show that the Quadratic Programming Feature Se- 

lection (QPFS) [13] falls out as a special case of our formulation in 

the dual space when using a hard margin. 

Experiments on seven publicly available datasets from a vision, 

biology and Natural Language Processing (NLP) domains show that 

our approach results in orders of magnitude faster solutions com- 

pared to the state of the art techniques while retaining the same 

level of accuracy. 

The rest of the paper is organized as follows. We describe our 

proposed max-margin formulation for feature selection (MMFS) in- 

cluding the dual coordinate descent approach in Section 2 . We 

present our experimental evaluation in Section 4 . We conclude our 

work in Section 5 . 

2. Proposed Max-Margin framework 

The key objective in feature selection is to select a subset of 

features which are highly relevant (that is high predictive accu- 

racy) and non-redundant (that is uncorrelated). Relevance is cap- 

tured either using an explicit metric (such as the correlation be- 

tween a feature and the target variable) or implicitly using the 

classifier accuracy on the subset of features being selected. Redun- 

dancy is captured using metrics such as correlation coefficient or 

mutual information. Most of the existing feature selection meth- 

ods rely on a pairwise notion of similarity to capture redundancy 

[11,13,18] . 

We try to answer the question “Is there a principled approach 

to jointly capturing the relevance as well redundancy amongst the 

features?”. To do this, we flip around the problem and examine 

the space where features themselves become the first class ob- 

jects. In particular, we analyze the space where “features” rep- 

resent the data points and “instances” represent the dimensions. 

Which boundary could describe well the set of features lying in 

this space? Locating the desired boundary is similar to one class 

SVM formulation [14] . This equivalently can be formulated as the 

problem of searching for a hyperplane which maximally separates 

the features (data points) from the origin in the appropriate ker- 

nel space over the features. In order to incorporate feature rel- 

evance, we construct a set of parallel marginal hyperplanes, one 

hyperplane for each feature. The margin of each separating hyper- 

plane captures the relevance of the corresponding feature. Greater 

the relevance, higher the margin required (a greater margin in- 

creases the chances of a feature being a support vector). Redun- 

dancy among the features is captured implicitly in our framework. 

The support vectors which lie on respective margin boundaries 

constitute the desired subset of features to be selected. This leads 

to a principled max-margin framework for feature selection. The 

proposed formulation for MMFS is presented hereafter. 

2.1. Formulation 

Let X represent the data matrix where each row vector x i 
T 

( i ∈ 1 . . . M) denotes an instance and each column vector f j ( j ∈ 

1 . . . N) denotes a feature vector. We will use φ to denote a fea- 

ture map such that the dot product between the data points can 

be computed via a kernel k (u, v ) = φ(u ) T φ(v ) , which can be in- 

terpreted as the similarity of u and v . We will use Y to denote the 

vector of class labels y i ’s (i ∈ 1 . . . M) . Based on the above nota- 

tions, we present the following hard margin for feature selection in 

Fig. 1. Feature representation in sample space. The diagram is conceptual only. 

the primal: 

min 

w,b 

1 

2 

w 

T w + b 

subject to w 

T φ( f i ) + b ≥ r i , ∀ i = 1 , . . . , N;
(1) 

where, w represents a vector normal to the separating hyper- 

plane(s) 1 and b represents the bias term. r i captures the relevance 

for the i th feature. The equation of the separating hyperplane is 

given by w 

T φ( f i ) + b = 0 with the distance of the hyperplane from 

the origin being −b. In the hard margin formulation, a single out- 

lier can determine the boundary which makes it overly sensitive to 

noise in the features. In order to handle the noise in the features, 

we propose following soft margin formulation. 

min 

w,b 

1 

2 

w 

T w + b + C 

N ∑ 

i =1 

ξi 

subject to w 

T φ( f i ) + b ≥ r i − ξi , ξi ≥ 0 , ∀ i = 1 , . . . , N;
(2) 

where, ξ i ’s represent slack variables and C represents trade-off be- 

tween the margin width and sum of slack variables. Note that in 

this formulation the objective function is similar to the one class 

SVM [14] . However, the constraints are very much different as our 

formulation includes the relevance of the features ( r ). The choice 

of φ determines the kind of similarity (correlation) to be captured 

among the features. The set of support vectors obtained after opti- 

mizing this problem i.e. { f i | w 

T φ( f i ) + b = r i } and the margin vi- 

olators { f i | ξ i > 0} constitute the set of features to be selected. 

In the dual space, this translates to those features being selected 

for which 0 < αi ≤ C where αi is the Lagrange multiplier for f i . 

We will refer to our approach as Max-Margin Feature Selection 

(MMFS). Note that when dealing with hard margin (no noise) case 

and the term involving C disappears (since this enforces ξi = 0 , ∀ i ). 

Fig. 1 illustrates the intuition behind our proposed framework 

in the linear dot product space (with hard margin). In the figure, 

w 

T f + b = 0 represents the separating hyperplane. The distance of 

this hyperplane from the origin is given by −b/ || w || . The first term 

in the objective of Eq. (2) tries to minimize w 

T w i.e. maximize 

1 / || w || . The second term in the objective tries to minimize b i.e. 

maximize −b. Hence, the overall objective tries to push the plane 

away from the origin. The i th dashed plane represents the margin 

1 All the separating hyperplanes are parallel to each other in our framework. 
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