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a b s t r a c t 

The aim of this work is to improve upon the state-of-the-art pixel-level, Least-Squares (LS) based congeal- 

ing methods. Specifically, we propose a new iterative algorithm, which outperforms in terms of speed, 

convergence rate and robustness the state-of-the-art inverse compositional LS based iterative scheme. 

Namely, by associating the geometric distortion of each image of the ensemble with the position of a 

particle of a multi particle system, we succeed to align the ensemble without having to align all the indi- 

vidual pairs resulting from it. Instead we align each image with the “mean”, but unknown, image. To this 

end, by imposing the “center of mass” of the particle system to be motionless during each iteration of 

the minimization process, a sequence of “centroid” images whose limit is the unknown “mean” image is 

defined, thus solving the congealing problem. The proposed congealing technique is invariant to the size 

of the image set and depends only on the image size, thus it can be used for the successful solution of 

the congealing problem on large image sets with low complexity. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The problem of image congealing (group-wise align- 

ment/registration) is an important one within the computer 

vision community. A good congealing algorithm can be used as 

preprocessing to notably improve the performance of other vision 

tasks within different research areas. In recent literature, the 

existing image congealing techniques can be broadly classified into 

the following two categories [7,11] : 

• Intensity/Pixel-level optimization and 

• Visual-Object-Categoriation (VOC). 

Our work improves upon the most widely recognized pixel- 

level LS based state-of-the-art approach. All pixel level state-of- 

the-art algorithms can be considered as variations of a common 

base framework. The basic idea is to use one image at a time as 

the held out image and the rest of the ensemble as the stack. Hav- 

ing done that the goal is to minimize, in an iterative fashion, an 

error function defined over all of the ensemble, by estimating a 

warp update for the held out image that aligns it with the stack. 

Algorithms based on the aforementioned idea include congealing 

methods with entropy based cost functions, such as the algorithms 

proposed in [8,14,16] as well as with LS based cost functions such 

as the methods proposed in [2–4,15] . 
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In [12] an error function based on mutual information that 

copes with possible variations in appearance between similar ob- 

jects of the same class is defined. In addition, in [5,6] extended 

entropy based congealing for the usage on real world complex im- 

ages is proposed. Such a framework can be incorporated within 

the rest of these techniques in order to deal with background vari- 

ations. LS based congealing algorithms tend to perform better in 

terms of convergence rate and accuracy. In the LS case, there are 

two ways to align the held out image with the stack using gradient 

descend optimization techniques. The first one, which is known as 

the forward LS congealing approach, is to align the held out im- 

age with the mean image of the stack. This approach has poor 

alignment performance, especially for strong initial misalignments, 

but has a really low computational cost. The second one, which is 

known as the inverse LS congealing approach, computes a common 

warp update for all images of the stack by utilizing the inverse ap- 

proach presented in [3] , i.e. to align each image of the stack with 

the current held out image. This approach outperforms forward LS 

in both accuracy and robustibility, but has a high computational 

cost due to existing nested loops. This means that its cost becomes 

prohibitive for large image sets as the number of sub-problems 

grows quadratically with respect to the image set’s size. Another 

drawback lies in the additional robustification needed for its er- 

ror function and warp computations in order to be able to handle 

outliers [2] . This stems from the fact that the initial hypothesis be- 

hind the minimization strategy of the overall error function, which 

is the accumulation of all error functions per held out image, is 

flawed. 
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The proposed congealing method improves upon all the desir- 

able characteristics of the state-of-the-art inverse method, while 

maintaining a linear to the set size computational cost, similar to 

that of the forward approach, plus the cost of the singular value 

decomposition on the centroid of the pseudo inverse of the Ja- 

cobian matrices over the entire ensemble of the images. Having 

mentioned the above, we still apply our warp updates composi- 

tionally and not additively, since as shown in [3] the compositional 

warping is more robust for large image sets. Finally, the proposed 

technique can be easily adapted to make use of feature descriptors, 

instead of intensity values, as the representation of each image, as 

the majority of the unsupervised intensity-based techniques during 

the joint alignment process do, in order to cope with background 

variations. 

The remainder of this paper is organized as follows: In 

Section 2 , we formulate the image congealing problem and several 

issues related with it are examined. In Section 3 a particle sys- 

tem strongly related to the geometric transformations of the im- 

age’s set is introduced and the proposed solution is presented. In 

Section 4 the results of the experiments we have conducted are 

presented. Finally, Section 5 contains our conclusions. 

2. Problem formulation 

2.1. Preliminaries 

Let us consider a set containing N images: 

S i = { i n } N n =1 (1) 

that belong to the same cluster, that is S i contains a group of simi- 

lar in shape and aligned images, where i denotes the column-wise 

of length N x N y vectorized version of size N x × N y image I . Then, it 

is well known that the “mean” image which is defined by: 

ī � = 

1 

N 

N ∑ 

n =1 

i n (2) 

constitutes the most representative image for the cluster and it can 

result from the solution of the following optimization problem: 

ī � = arg min 

ī ∈ R N x N y 

{ 

N ∑ 

n =1 

|| ̄i − i n || 2 2 

} 

(3) 

where || x || 2 denotes the l 2 norm of vector x . 

Let us now consider, apart from the set S i , the following set: 

S i w (P ) = { i w 

( p n ) } N n =1 (4) 

containing the geometrically distorted vectorized images of set S i 
of (1) where 

P = { p n } N n =1 , (5) 

is a set of N warp parameter vectors. Under the used warping 

transformation w ( . ; p n ) 
1 , which is parameterized by the vector 

p n ∈ R 

M , each pixel x of the Region of Interest of image i n of set 

S i is mapped onto the pixel ˆ x of the corresponding image i w 

( p n ) 

of set S i w (P ) , i.e.: 

I w 

( ̂ x ; p n ) = I n (w (x ; p n )) . (6) 

Then, congealing can be defined as the minimization problem of 

a misalignment function, let us denote it by E(P ) , which is calcu- 

lated over the set S i w (P ) , for a warping function that models the 

parametric form of the misalignment to be removed. In general, 

solving the image congealing problem is not an easy task and its 

1 In this paper, to model the warping process we are going to use the class of 

affine transformations with p n ∈ R 6 . 

complexity heavily depends on several factors, such as the size of 

the ensemble and the strongness of the geometric distortions, to 

name a few. However, in some cases the aforementioned problem 

can be easily solved. Such two characteristic cases follow: 

1. Image set S i defined in ( 1 ) is known 

In this case, we can easily “align” the image sets by solving the 

following N optimization problems: 

p 

� 
n = arg min 

p n ∈ R M 
|| i n − i w 

(p n ) || 2 2 , n = 1 , 2 , · · · , N. (7) 

2. Image set S i is unknown but the “mean” image ī � is known 

We still can approximatelly solve the problem if we consider 

that ī � defined by (2) is the rank-one Singular Value Decompo- 

sition (SVD) of matrix S = [ i 1 i 2 · · · i N ] whose every column is 

a member of the ensemble (1) , by solving the following N opti- 

mization problems: 

p 

� 
n = arg min 

p n ∈ R M 
|| ̄i � − i w 

(p n ) || 2 2 , n = 1 , 2 , · · · , N. (8) 

Note that both the objective functions involved in the optimiza- 

tion problems (7) and (8) are nonlinear with respect to the pa- 

rameter vector p n . This, of course, suggests that their minimiza- 

tion requires nonlinear optimization techniques either by using di- 

rect search or by following gradient-based approaches. Let us now 

concentrate ourselves on one specific of the N optimization prob- 

lems defined in (8) . As is customary in iterative techniques, the 

original optimization problem is replaced by a sequence of sec- 

ondary optimizations. Each secondary optimization relies on the 

outcome of its predecessor, thus generating a chain of parame- 

ter estimates which hopefully converges to the desired optimizing 

vector. At each iteration, we do not have to optimize the objective 

function but an approximation to this function. Assuming that at 

the k th iteration of the iterative procedure p n ( k ) is “close” to some 

nominal parameter vector ˜ p n , then we write p n (k ) = 

˜ p n + �p n (k ) , 

where �p n ( k ) denotes a vector of perturbations. 

Let w (x ; ˜ p n ) be the warped coordinates under the nominal pa- 

rameter vector and w ( x ; p n ( k )) under the perturbed one. Consid- 

ering the intensity of the warped image at coordinates under the 

nominal parameter vector and applying a first-order Taylor expan- 

sion with respect to the parameters, we can write: 

i w 

(p n (k )) ≈ i w 

( ̃  p n ) + G w 

( ̃  p n )�p n (k ) (9) 

where G w 

( ̃ p n ) denotes the size N x N y × M Jacobian matrix of the 

warped intensity vector with respect to the parameters, evaluated 

at the nominal parameter values ˜ p n . Then, it is well known that 

the optimum vector of perturbations is defined by the following 

relation [1] : 

�p n (k ) = A w 

( ̃  p n )( ̄i 
� − i w 

( ̃  p n )) , (10) 

where: 

A w 

( ̃  p n ) = (G w 

( ̃  p n ) 
T G w 

( ̃  p n )) 
−1 G w 

( ̃  p n ) 
T , (11) 

is the M × N x N y pseudo inverse of the Jacobian matrix G w 

( ̃ p n ) . 

Note that for the solution of the optimization problem by using 

an iterative procedure the “mean” image ī � as well as the nomi- 

nal parameters ˜ p n are quantities that must be known. Note also 

that since N x N y � M , the column rank of the pseudo inverse of 

the matrix G w 

( ̃ p n ) is upper bounded by M . Thus, for the definition 

of the optimum perturbations according to (10) , the projection of 

the error image ī � − i w 

( ̃ p n ) onto a subspace of R 

N x N y , of dimension 

at maximum M is needed. We are going to exploit this point in 

Section 3 in order to define a sequence of images whose limit will 

be the “mean” image. 

Let us consider now that we would like to solve the above 

mentioned problem, but even the “mean” image is unknown. In 

that case, irrespectively of the choice of the misalignment function 
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