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a b s t r a c t 

The density peaks clustering (DPC) algorithm is well known for its power on non-spherical distribution 

data sets. However, it works only on numerical values. This prohibits it from being used to cluster real 

world data containing categorical values and numerical values. Traditional clustering algorithms for mixed 

data use a pre-processing based on binary encoding. But such methods destruct the original structure 

of categorical attributes. Other solutions based on simple matching, such as K-Prototypes, need a user- 

defined parameter to avoid favoring either type of attribute. In order to overcome these problems, we 

present a novel clustering algorithm for mixed data, called DPC-MD. We improve DPC by using a new 

similarity criterion to deal with the three types of data: numerical, categorical, or mixed data. Compared 

to other methods for mixed data, DPC absolutely has more advantages to deal with non-spherical distri- 

bution data. In addition, the core of the proposed method is based on a new similarity measure for mixed 

data. This similarity measure is proposed to avoid feature transformation and parameter adjustment. The 

performance of our method is demonstrated by experiments on some real-world datasets in comparison 

with that of traditional clustering algorithms, such as K-Modes, K-Prototypes EKP and SBAC. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Clustering analysis has attracted a lot of research attention due 

to its usefulness in many applications, including community detec- 

tion, image processing, document processing, and so forth [1-7] . 

Clustering analysis has attracted a lot of research attention due to 

its usefulness in many applications, including most clustering al- 

gorithms rely on the assumption that data simply contain numer- 

ical values, but what should be dealt with is categorical values or 

mixed data containing both numerical and categorical values on 

data sets in the real world. For clustering algorithms dealing with 

mixed data, the core of these methods is how to measure the sim- 

ilarity for categorical attributes. Roughly, the existing clustering al- 

gorithms for mixed data can fall into two categories according to 

dealing with categorical attribute values. The first category of the 

methods is based on the pre-processing methods. The original at- 

tributes are transformed to new forms. Then, traditional distance 

functions are used to measure the transformed data in the new 

relation. The second category of approaches is based on similarity 

metrics dealing with categorical values directly. 
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Traditional clustering algorithms for mixed data have a pre- 

processing that is able to convert categorical attributes to new 

forms and facilitates processing. Binary encoding is the most com- 

mon pre-processing method. This method transforms each cate- 

gorical attribute to a set of binary attributes. For example, Ralam- 

bondrainy’s algorithm [8] transforms categorical attributes into a 

set of binary attributes. Then, new forms are treated as numeric in 

the K-Means algorithm. Hence, we can directly adopt most tradi- 

tional distances which are often used in numerical clustering, such 

as Euclidean distance, to define similarity between transformed ob- 

jects. However, this method destructs the original structure of cate- 

gorical attributes. In other words, transformed binary attributes are 

meaningless and their values are hard to interpret [9] . Apart from 

binary encoding, there are also other pre-processing methods. For 

example, in order to handle categorical data, Hsu [10] presents a 

new mechanism, distance hierarchy, which encodes a data set into 

a weighted tree structure. But it has a serious drawback that both 

the assignment of weights and the construction of distance hierar- 

chies rely on domain knowledge. 

In the respect of similarity metrics for categorical values, the 

K-Prototypes algorithm [11] is one of the most famous cluster- 

ing algorithms for mixed data. Nevertheless, the choice of the 

weight γ has a significant effect on clustering results. As a vari- 

ation of K-Prototypes algorithm, evolutionary K-Prototypes algo- 

rithm (EKP) [12] , an unsupervised evolutionary clustering algo- 
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rithm for mixed type data, which integrates evolutionary compu- 

tation framework with KP, also has a weight γ . Also, these algo- 

rithms [13,14] take into account the significance of different at- 

tributes towards the clustering process. However, a new param- 

eter, the degree of fuzziness α, is introduced into these cluster- 

ing algorithms. Hence, it will come out that choosing the param- 

eter is a delicate and difficult task for users that may be a road- 

block for using K-Prototypes and its variations efficiently. In addi- 

tion, some algorithms [15,16] use entropy-type measures to group 

objects. However, these methods only deal with categorical data 

instead of mixed data and these entropy-type criteria can only 

measure the similarity between an object and a cluster. Besides, 

OCIL [17] gives a unified similarity metric which can be applied to 

mixed data using the entropy-based criterion. This similarity met- 

ric is also based on the concept of object-cluster similarity. In other 

words, it only can measure the similarity between an object and a 

cluster. In addition, OCIL is an iterative clustering algorithm. This 

means that this method requires a random initialization and may 

trap into local optimum. Similar to OCIL, Lim, et al. [18] propose 

a clustering framework for mixed attribute type dataset based on 

the entropy concept. It also needs to adjust the parameter which 

is used to balance attribute type between categorical attribute and 

numerical one. Besides, Li and Biswas [9] propose a Similarity- 

Based Agglomerative Clustering (SBAC) algorithm based on a new 

similarity metric that deals with the mixed data. But this method 

is high computational complexity and only suitable for some small 

data sets. 

From the above discussion, most of clustering algorithms use 

the K-Means paradigm to cluster data having values. It means that 

those methods have an iterative process and probably trap into lo- 

cal optimum. A new algorithm, density peaks clustering (DPC) [19] , 

proposed by Rodriguez and Laio is published in the US journal Sci- 

ence. This algorithm is able to detect non-spherical clusters with- 

out specifying the number of clusters. And more important, DPC 

does not need to iterate. Some studies [20–24] have been going 

on around this method. However, there are still some shortcom- 

ings. For example, DPC algorithm cannot find the correct number 

of clusters automatically. In order to overcome this difficulty, Liang 

and Chen [25] propose the 3DC clustering based on the divide- 

and-conquer strategy and the density-reachable concept. Du et al. 

[26] propose a density peaks clustering based on k nearest neigh- 

bors (DPC-KNN) which introduces the idea of k nearest neighbors 

(KNN) into DPC and has another option for the local density com- 

putation. 

This paper presents a novel clustering algorithm, DPC-MD, 

based on a new similarity measure for mixed data. Actually, the 

proposed algorithm is the generalization of the original DPC algo- 

rithm. In order to assess the performance of the proposed algo- 

rithm, we compare the proposed algorithm with other algorithms 

on some UCI data sets. As a result, our algorithms have achieved 

satisfactory results in most data sets. 

2. Related works 

2.1. Notations 

Let X = { x 1 , x 2 , · · · , x n } denote a dataset of n mixed data ob- 

jects, where for each i , 1 ≤ i ≤ n , x i with m features consists of 

m r numerical features and m o categorical features. Therefore, for 

each i , 1 ≤ i ≤ n , and for k , 1 ≤ k ≤ m r , let x (r) 
i,k 

be the k th fea- 

ture of x (r) 
i 

, where x (r) 
i 

is the numerical part. Similarly, for each 

i , and for k , 1 ≤ k ≤ m o , x (o) 
i,k 

denotes the k th feature of x (o) 
i 

, 

where x (o) 
i 

is the categorical part. The domain of numerical fea- 

ture F (r) 
k 

is represented by continuous values. And categorical fea- 

ture F (o) 
k 

has t k categories, i.e., DOM ( F (o) 
k 

) = { f k, 1 , f k, 2 , · · · , f k, t k 
} , 

where DOM ( F (o) 
k 

) contains all possible values that can be chosen 

by attribute F (o) 
k 

. Therefore, x i can be represented as [ x (r) 
i 

, x (o) 
i 

] = 

[ x (r) 
i, 1 

, x (r) 
i, 2 

, · · · , x (r) 
i, m r 

, x (o) 
i, m r +1 

, · · · , x (o) 
i,m 

] . 

Distance functions such as Euclidean distance are used as sim- 

ilarity measure for numerical attribute. The Euclidean distance 

dist( x i , x j ) between the object x i and the object x j is defined as: 

dist 
(
x i , x j 

)
= 

∥∥x i − x j 

∥∥
2 
. (1) 

The definition of the information entropy H ( x ) is given, as fol- 

low: 

H ( x ) = −
∑ 

x ∈ V p ( x ) log ( p ( x ) ) . (2) 

where p ( x ) is the probability mass function of the random variable 

x. V is the finite set of possible outcomes of x . 

2.2. Density peaks clustering 

Its idea is that cluster centers are characterized by a higher 

density than their neighbors and by a relatively large distance 

from points with higher densities. This method utilizes two im- 

portant quantities: One is the local density ρ i of each point x i , 

and the other is its distance δi from points of higher density. The 

two quantities correspond to two assumptions with respect to the 

cluster centers. One is that the cluster centers are surrounded by 

neighbors with a lower local density. The other is that they have 

relatively larger distance to the points of higher density. In the fol- 

lowing, we will describe the computation of ρ i and δi in much 

more detail. 

DPC represents data objects as points in a space and adopts a 

distance metric, such as ( 1 ), as a similarity between objects. 

The local density of a point x i , denoted by ρ i , is defined as 

ρi = 

∑ 

j 

exp 

( 

−
dist 

(
x i , x j 

)2 

d c 
2 

) 

, (3) 

where d c is an adjustable parameter, controlling the weight degra- 

dation rate. 

d c is the only variable in ( 3 ). The choice of d c is actually the 

choice of the average number of neighbors of all points in data set. 

Let v = n d × ( p/ 100 ) , where n d = ( n 
2 
) and p is a percentage. And n 

denotes the number of points in data set. 

In the code presented by Rodriguez and Laio, d c is define as 

d c = d � τ� , (4) 

where d � τ� ∈ D = [ d 1 , d 1 , · · · d n d ] . D is a set of all the distances be- 

tween every two points in data set, which are sorted in ascending 

order. � τ� is the subscript of d � τ� , where � · � is the ceiling func- 

tion. 

The computation of δi is quite simple. The minimum distance 

between the point of x i and any other points with higher density, 

denoted by δi , 

δi = 

⎧ ⎨ 

⎩ 

min 

j: ρi < ρ j 

(
dist 

(
x i , x j 

))
, i f ∃ j s.t. ρi < ρ j 

max 
j 

(
dist 

(
x i , x j 

))
, otherwise 

(5) 

When the local density and delta values for each point have 

been calculated, this method identifies the cluster centers by 

searching anomalously large parameters ρ i and δi . On the basis of 

this idea, cluster centers always appear on the upper-right corner 

of the decision graph. 

After cluster centers have been found, DPC assigns each remain- 

ing points to the same cluster as its nearest neighbors with higher 

density. A representation named as decision graph is introduced to 

help one to make a decision. This representation is the plot of δi 

as a function of ρ i for each point. 
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