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a b s t r a c t 

Several popular graph embedding techniques for representation learning and dimensionality reduction 

rely on performing computationally expensive eigendecompositions to derive a nonlinear transformation 

of the input data space. The resulting eigenvectors encode the embedding coordinates for the training 

samples only, and so the embedding of novel data samples requires further costly computation. In this 

paper, we present a method for the out-of-sample extension of graph embeddings using deep neural 

networks (DNNs) to parametrically approximate these nonlinear maps. Compared with traditional non- 

parametric out-of-sample extension methods, we demonstrate that the DNNs can generalize with equal 

or better fidelity and require orders of magnitude less computation at test time. Moreover, we find that 

unsupervised pretraining of the DNNs improves optimization for larger network sizes, thus removing sen- 

sitivity to model selection. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Manifold learning is a popular data analysis framework that 

attempts to recover compact low-dimensional embeddings of 

high-dimensional datasets. Several manifold learning algorithms—

including ISOMAP [30] , locally linear embedding [24,25] , diffusion 

maps [7] , and Laplacian eigenmaps [1] —derive coordinate repre- 

sentations that encode the local neighborhood structure of an un- 

labeled data sample. In these approaches, data is first mapped into 

a graph, with each data point acting as a node and edge weights 

between the nodes determined from some affinity function. This 

entire graph is then embedded into a Euclidean space, resulting 

in a new representation of the original data. For the remainder of 

this paper, we will refer to this process as graph embedding . These 

techniques have found considerable success in a wide array of ap- 

plication domains, including computer vision [8,13,22] , speech pro- 

cessing [16–18,21,26,31] , and natural language processing [27,28] . 

In [32] , it was shown that these algorithms are all members of a 

more general graph embedding framework, in which the transfor- 

mations are derived via a generalized eigendecomposition of the 

graph Laplacian matrix operator for algorithm-specific graph con- 

struction methodologies. 

In their basic form, these graph embedding techniques only 

provide transformations of the training samples used to construct 
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the graph. Thus, even if a large training set is used, computing the 

output of the estimated map for a novel test sample is not possi- 

ble. To address this shortcoming, a nonparametric out-of-sample 

extension technique based on Nyström sampling was developed 

that leverages the input and target representation pairs for each 

training sample to approximate what the map would have gener- 

ated for an arbitrary test point [5,20] . While generally effective, the 

Nyström extension is a kernel-based method with time complex- 

ity that scales linearly with the number of training samples. This 

increase in computational cost is especially problematic because 

manifold methods are most effective when provided the benefit of 

large training sets for representation learning. It would be highly 

beneficial to remove this trade-off between representation quality 

and extension feasibility with a more efficiently scaleable method 

for out-of-sample extension. 

Neural networks have long been known to be a powerful learn- 

ing framework for classification and regression, capable of distill- 

ing large training sets into efficiently evaluated parametric mod- 

els, and thus are a natural choice for modeling manifold embed- 

dings. In their seminal paper, Hornik et al. [14] proved that feed- 

forward neural networks can approximate a virtually arbitrary de- 

terministic map between high-dimensional spaces, indicating that 

they would also be ideally suited for our out-of-sample extension 

problem. However, there are two caveats for the use of neural net- 

works as universal approximators: (i) there must be sufficient hid- 

den units (i.e. sufficient model parameters), which in turn require 

additional data samples for training without overfitting; and (ii) 

the non-convexity of the objective function grows with the num- 
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ber of model parameters, making the search for reliable global so- 

lutions increasingly difficult. 

With these considerations in mind, we explore the application 

of recent advances in deep neural network (DNN) training method- 

ology to the out-of-sample extension problem. First, by stabilizing 

the Lanczos eigendecomposition algorithm, we are able to produce 

exact graph embeddings for training sets with millions of data 

samples. This permits an extensive study with deeper architectures 

than have been previously considered for the task. Second, moti- 

vated by success in the supervised classification setting [3,4] , we 

consider unsupervised DNN pretraining procedures to improve op- 

timization as our larger training samples support commensurate 

increases in model complexity. 

In the work that follows, we compare the performance of our 

parametric DNN approach against a Nyström sampling baseline, 

both in terms of approximation fidelity and test runtime. We find 

DNNs to match or outperform the approximation fidelity of the 

Nyström method for all training sample sizes. Furthermore, since 

the DNN approach is parametric, its test-time complexity for fixed 

network size is constant in the training sample size, producing 

orders-of-magnitude speedup over Nyström sampling for larger 

training sizes. 

The remainder of this paper is organized as follows. We be- 

gin with an overview of prior work in out-of-sample extension for 

graph embeddings. We then describe the strategy for stabilizing 

eigendecompositions for large training sets, followed by a descrip- 

tion of the process for training our DNN out-of-sample extension 

to approximate the embedding for unseen data. Finally, we ana- 

lyze the reconstruction accuracy and computation speed of both 

the Nyström baseline and the DNN approach. 

2. Prior work 

The most popular methods for extending graph embeddings to 

unseen data have been based on Nyström sampling [5,20] , and 

thus they will serve as the baseline in our experiments. This is a 

nonparametric, kernel-based technique that approximates the em- 

bedding of each test sample by computing a weighted interpo- 

lation of the embeddings for training samples that were nearby 

in the original input space. Formally (see [5] for details), let X = 

{ x 1 , . . . , x n } be the set of training samples on which we will learn 

the graph embedding, where each x i ∈ R 

d . These data points in X 

are be used to build a graph whose edge weights are derived from 

some affinity function, and that graph is then embedded via eigen- 

decomposition of the graph Laplacian. Formally, let L be the sym- 

metric, normalized graph Laplacian operator defined for the set X 

such that L = I − D 

−1 / 2 AD 

−1 / 2 , where A i, j = K(x i , x j ) for some pos- 

itive semidefinite kernel function K that must be specialized for 

each specific graph embedding algorithm; and D is the diagonal 

matrix defined via D i,i = 

∑ 

j A i, j . Let the spectral decomposition 

of the normalized Laplacian be denoted as L = U �U 

T , where the 

diagonal entries of � = diag( λ1 , . . . , λn ) are non-increasing. The 

d ′ -dimensional embedding of X is then provided by the first d ′ 
columns of U , which we shall denote as U 

(d ′ ) . Stated simply, the 

embedding of x i is given by the i -th row of U 

(d ′ ) . 
To embed an out-of-sample data point x ∈ R 

d via the Nyström 

extension, the p -th dimension of the extension y p ( x ) is given by 

y p (x ) = 

1 

λp 

n ∑ 

i =1 

U 

(d ′ ) 
i,p 

K(x, x i ) . (1) 

We see that the complexity of this extension is linear in the size 

of the training set. In practice, approximate nearest neighbor tech- 

niques can be used to speed this up with minimal loss in fidelity 

(the implementation we benchmark uses k-d tree for this purpose), 

but the algorithmic complexity still increases with training size. Fi- 

nally, note that a nearly equivalent formulation based on reproduc- 

ing Kernel Hilbert space theory was presented in [2] , where the 

kernelization was introduced into the objective function before the 

eigendecomposition is performed. This formulation has the same 

scalability limitations as the Nyström extension. These computa- 

tional difficulties motivate our exploration of DNNs to model em- 

beddings for out-of-sample extension. 

Traditional (shallow) neural networks have also been consid- 

ered for out-of-sample extension in the past in two limited studies 

involving small datasets and model architectures [6,10] . The idea 

was introduced in [10] , but the study failed to include a mean- 

ingful quantitative evaluation to measure the effectiveness of the 

learned mapping as compared to more typical out-of-sample ex- 

tensions like the Nyström extension. The experiments in [6] , which 

predated the advent of recent deep learning training methodolo- 

gies, found neural networks to be one of the worst performing 

methods. However, with a similar motive of computational effi- 

ciency, [12] explored the use of DNNs for approximating expensive 

sparse coding transformations and produced more compelling re- 

sults. 

3. A scalable out-of-sample extension 

A truly scalable out-of-sample extension must simultaneously 

consume a large amount of training data for detailed modeling 

and provide a test-time complexity that does not strongly depend 

on that training set size. The nonparametric nature of the Nyström 

method leads to a linear dependence on the training set size (log- 

arithmic if kernel approximations are implemented) and thus can 

get bogged down as we feed more data to the graph embedding 

training. We begin this section with a simple trick for the eigende- 

composition of large graph Laplacians, which permits larger train- 

ing sets and motivates the need for more computationally efficient 

extension methods. This is followed by a presentation of the deep 

neural network architecture we propose to efficiently extend the 

embedding to arbitrary test points. 

3.1. Stabilizing the eigendecomposition 

In [9] , it is suggested that the stability of the Lanczos eigende- 

composition algorithm can be greatly increased (and memory re- 

quirements consequently reduced) by reformulating the eigenprob- 

lem to recover the largest eigenvalues. We can exploit this by ob- 

serving that if v is an eigenvector of L with eigenvalue λ, then v 

is also an eigenvector of ˜ L = I − L with eigenvalue 1 − λ (which is 

guaranteed to be less than or equal to 1). Thus, with this small 

redefinition of the eigenproblem, we can recover the same eigen- 

vectors by considering the largest eigenvalue criterion. Note that 

when using the ARPACK implementation, a similar effect can also 

be accomplished by searching for the smallest algebraic eigenval- 

ues of L directly. 

While this trick is by no means a fundamental theoretical inno- 

vation on our part, its effects have proven dramatic. Our past ef- 

forts to solve for the smallest magnitude eigenvalues of the graph 

Laplacian exceeded our hardware memory limits when our graphs 

reached the order of 10 0,0 0 0 nodes and 1 million edges. Employ- 

ing this simple trick, we have now succeeded in processing graphs 

with order 100 million nodes and order 10 billion edges on con- 

ventional hardware, stably solving for the top 100 eigenvectors 

in a few days using 32 cores and 0.5 TB of RAM. This problem 

size even exceeds what was reported using approximate singular 

value decomposition solvers in the past [29] . For the 1.5 million 

node graphs we consider in our experiments described below, this 

method was more than adequate for our (offline) embedding train- 

ing needs. 
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