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a b s t r a c t 

This paper proposes speeding up of convolutional neural networks using Winner Takes All (WTA) hashing. 

More specifically, WTA hash is used to identify relevant units and only these are computed, effectively 

ignoring the rest of the units. We show that the proposed method reduces the computational cost of 

forward and backward propagation for large fully connected layers. This allows us to train classification 

layers with a large number of units without the associated time penalty. We present different exper- 

iments on a dataset with 21K classes to gauge the effectiveness of this proposal. We concretely show 

that only a small amount of computation is required to train a classification layer. Then we measure and 

showcase the ability of WTA in identifying the required computation. Furthermore we compare this ap- 

proach to the baseline and demonstrate a 6 fold speed up during training without compromising on the 

performance. 

© 2017 Published by Elsevier B.V. 

Introduction 

Convolutional Neural Networks (CNN) have recently achieved 

state of the art performance in a number of computer vision tasks 

as demonstrated in Krizhevsky et al. [1] and Razavian et al. [2] . 

CNNs usually consist of a set of convolutional layers followed by 

several fully connected layers. The current trend is to train CNNs 

using stochastic gradient descent and backpropagation. Because 

these networks have a large number of parameters, large datasets 

are used during training to avoid overfitting. 

One of the challenges when working with large networks is 

the computational cost during training. Many different effort s have 

emerged to increase the speed of these networks. This includes us- 

ing special commands on CPUs [3] , using GPUs (as in frameworks 

such as Torch, Caffe and Theano), and using FPGAs [4,5] . Although 

these techniques have had great success in reducing training and 

testing time for CNNs, the amount of computation required has re- 

mained constant. This is because they have focused on executing 

these operations faster and/or in parallel, instead of reducing the 

number of needed operations. 

In this paper we propose a different approach for speeding up 

large CNN layers with sparse output activation. Instead of trying to 

speed up the computation itself we propose to reduce the compu- 
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tational complexity by cutting down on the amount of computa- 

tion needed. 

To this end we make use of 2 main observations: (1) the most 

computationally expensive operation for these fully connected lay- 

ers is matrix multiplication which occurs both during forward 

propagation and backpropagation, and (2) the computations re- 

lated to units with low activation can be avoided. This is because 

we are only interested in units that are “turned on” and which will 

lead to changes in the output. The same is true for backpropaga- 

tion, units with extremely low values will have very low slope and 

can be ignored or aggregated. This reasoning holds true for any 

layer with a non-linearity function that applies a cut off on the 

output values but the extra computation is more pronounced in 

layers that are trained to have a sparse activation pattern. 

Although methods for more efficient matrix multiplication ex- 

ist [6] , these have not been applied to neural networks and, in 

most cases, current implementations only lead to a modest sav- 

ing in computational complexity of O ( n 2.807 ) vs O ( n 3 ). As a con- 

sequence, the current implementations of neural networks have a 

computational cost that grows linearly with the number of units. 

To avoid the costs associated with multiplication of matrices 

we propose to use Winner Takes All (WTA) hashing to identify the 

units that will have sufficiently high amplitude before performing 

the expensive matrix computations. Then we compute the exact 

output of only these units, and use a default value for the rest of 

the units. This way only a small number of units in the output of 

the layer needs to be computed. 
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0167-8655/© 2017 Published by Elsevier B.V. 

Please cite this article as: A.H. Bakhtiary et al., Winner takes all hashing for speeding up the training of neural networks in large class 

problems, Pattern Recognition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.01.001 

http://dx.doi.org/10.1016/j.patrec.2017.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
mailto:abakhtiary@uoc.edu
mailto:amir.h.bakhtiary@gmail.com
mailto:alapedriza@uoc.edu
mailto:dmasipr@uoc.edu
http://dx.doi.org/10.1016/j.patrec.2017.01.001
http://dx.doi.org/10.1016/j.patrec.2017.01.001


2 A.H. Bakhtiary et al. / Pattern Recognition Letters 0 0 0 (2017) 1–10 

ARTICLE IN PRESS 

JID: PATREC [m5G; January 10, 2017;22:8 ] 

Furthermore, during the backpropagation phase, we only back- 

propagate through units that were activated and also units that 

were not activated but should have been. We can do this because 

the gradient of the none active units is zero or near zero depend- 

ing on the non-linearity used. Therefore, not computing the dot 

products where these zero values are present saves computation 

without changing the final computed derivatives. 

The WTA hashing technique has been already used in vision 

tasks. In particular, it was successfully applied on a HOG-based ob- 

ject detector [7] in order to detect 10 0,0 0 0 object classes. This was 

done by first training a part based model using a support vector 

approach [8] , then WTA hashing was used to speed up the detec- 

tion phase of the algorithm. 

To contrast our work with [7] , we are using the WTA hash to 

speed up layers of a deep neural network instead of a support vec- 

tor machine. Furthermore we use WTA to prune the active units 

during both forward and backward propagation passes. This results 

in speedups both during training and testing. 

To show the viability of our approach, we have applied this 

technique to the final layer of a CNN that performs classification 

on a very large number of classes. The first seven layers of our net- 

work is the same as the AlexNet from Krizhevsky et al. [1] which is 

the basis of many of the CNNs used for computer vision. Further- 

more, during training we have used pretrained weights for these 

layers and kept them fixed during training. 

The difference between this work and AlexNet is that we have 

replaced the last fully connected layer, the classification layer, with 

our WTA hashing layer. Also to showcase the strength of our ap- 

proach, we have opted to use the network to perform classification 

on a dataset that contains 21K classes as opposed to the 1K classes. 

We train this network to classify the ImageNet-21K dataset 

and reach a top-1 accuracy of 20.3%. To put this into perspec- 

tive, [9] achieves an accuracy of 10.5% on the ImageNet-21K 

dataset. They use manually defined features and a fine tuned linear 

classifier. In [10] an accuracy of 15.8% is achieved. They first train 

a deep stack of autoencoders in an unsupervised fashion and then 

use the resulting network to derive features. A logistic classifier is 

then used to perform classification on these features. 

In [11] it is shown how a CNN can achieve an accuracy of 29.8% 

on the ImageNet-21K dataset. This work uses an architecture sim- 

ilar to the AlexNet, but it differs from our approach in that it 

trains the complete network as opposed to using fixed pretrained 

weights. It needs to be pointed out that although this method 

achieves a higher accuracy, it requires training for 10 days on 62 

machines. This is in contrast to our method where the training is 

performed on one machine in under 10 h. 

In our work we will demonstrate a 6 fold speedup during train- 

ing of the classification layer. But if the classification layer is large 

enough, the WTA hashing layer can speed up the training of the 

whole network. 

The green bars in Fig. 1 show the distribution of the computa- 

tional cost of the AlexNet architecture as we change the number 

of classes. In the original AlexNet configuration, with 10 0 0 classes, 

the computational cost of the classification layer is small compared 

to the rest of the network. As we increase the number of classes 

from 10 0 0 in Fig. 1 a to 10,0 0 0 in Fig. 1 b or 10 0,0 0 0 in Fig. 1 c 

the cost of the output layer quickly dominates the computational 

cost of the network. This cost becomes more pronounced when the 

output size of layer 7 is increased because the computation com- 

plexity of a layer is linear in both its input size and its output size. 

The red bars in Fig. 1 depict the computational cost of the 

output layer when we use WTA to prune the extra neurons. Our 

approach requires much less computation and this improvement 

allows using the same network architecture on very large num- 

bers of classes without significantly increasing the overall compu- 

tational cost. 

Fig. 1. Distribution of computational cost on AlexNet [1] as we vary the number 

of output classes from (a) 1,0 0 0, (b) 10,0 0 0 and (c) 10 0,0 0 0. In red we show the 

computational cost with our proposed method. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 

In the next section we will give a brief overview of WTA hash- 

ing. We will follow with a section on how WTA can be used to 

speed up layers with sparse activation patterns. Section 3 dis- 

cusses the theoretical computational complexity of the WTA hash- 

ing layer. Section 4 presents our experiments. Here we will show 

how much computational savings are ideally possible, and how 

WTA is able to realize these saving. Also we present an experi- 

ment showing how WTA can be used to achieve a 6 fold speedup 

when training and testing a classification layer on 21K classes. The 

final Section 5 , contains the conclusions of this paper. 

1. Winner takes all (WTA) hashing 

The Winner Takes All, WTA, hashing is a generalization of the 

minhash approach. Minhash was designed for finding similar doc- 

uments in a large set of documents and has been shown to be ef- 

fective for data mining in large datasets [12] . 

The WTA hash itself is a part of the Locality Sensitive Hashing 

(L SH) family. L SH schemes assign similar values to vectors that are 

close to each other and were originally designed to address the 

nearest neighbor problem [13] . 

WTA hashing works by transforming the input feature space 

into binary codes. In the resulting space, the Hamming distance 

closely correlates with rank similarity measure [14] . Furthermore, 

the obtained binary descriptors show invariance given slight per- 

turbations of the original data, which makes the method a suitable 

basis for retrieval algorithms. Also, the WTA is based on random 

permutations on the data components and does not require any 

data-driven learning. 

Fig. 2 summarizes the computation of one WTA hash. Each hash 

is composed of N s sections, each one being characterized by a dif- 

ferent permutation. That is, each section α belonging to each hash 

i , has its own permutation denoted by the function permute i, α . 

To compute a hash, we permute the input vector [ x 1 , x 2 , . . . , x K ] 

by indexing the incoming data through the hash’s permutation ar- 

ray. Then for each section, the N e first elements of the permuted 

vector are selected: [ x ′ 
1 
, x ′ 

2 
, . . . , x ′ 

N e 
] . We compare these elements 

and the index of the largest element is recorded, � α . This process 

is repeated N s times to arrive at N s hash sections. These sections 

are concatenated to form a single hash h i . 
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