
ARTICLE IN PRESS

JID: PATREC [m5G; January 10, 2017;22:8]

Pattern Recognition Letters 0 0 0 (2017) 1–10

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Winner takes all hashing for speeding up the training of neural

networks in large class problems

Amir H. Bakhtiary

∗, Agata Lapedriza , David Masip

Universitat Oberta de Catalunya, Rambla del Poblenou 156, Barcelona 08018, Spain

a r t i c l e i n f o

Article history:

Available online xxx

MSC:

41A05

41A10

65D05

65D17

keywords:

Winner takes all hashing

Convolutional neural networks

Large scale classification

a b s t r a c t

This paper proposes speeding up of convolutional neural networks using Winner Takes All (WTA) hashing.

More specifically, WTA hash is used to identify relevant units and only these are computed, effectively

ignoring the rest of the units. We show that the proposed method reduces the computational cost of

forward and backward propagation for large fully connected layers. This allows us to train classification

layers with a large number of units without the associated time penalty. We present different exper-

iments on a dataset with 21K classes to gauge the effectiveness of this proposal. We concretely show

that only a small amount of computation is required to train a classification layer. Then we measure and

showcase the ability of WTA in identifying the required computation. Furthermore we compare this ap-

proach to the baseline and demonstrate a 6 fold speed up during training without compromising on the

performance.

© 2017 Published by Elsevier B.V.

Introduction

Convolutional Neural Networks (CNN) have recently achieved

state of the art performance in a number of computer vision tasks

as demonstrated in Krizhevsky et al. [1] and Razavian et al. [2] .

CNNs usually consist of a set of convolutional layers followed by

several fully connected layers. The current trend is to train CNNs

using stochastic gradient descent and backpropagation. Because

these networks have a large number of parameters, large datasets

are used during training to avoid overfitting.

One of the challenges when working with large networks is

the computational cost during training. Many different effort s have

emerged to increase the speed of these networks. This includes us-

ing special commands on CPUs [3] , using GPUs (as in frameworks

such as Torch, Caffe and Theano), and using FPGAs [4,5] . Although

these techniques have had great success in reducing training and

testing time for CNNs, the amount of computation required has re-

mained constant. This is because they have focused on executing

these operations faster and/or in parallel, instead of reducing the

number of needed operations.

In this paper we propose a different approach for speeding up

large CNN layers with sparse output activation. Instead of trying to

speed up the computation itself we propose to reduce the compu-

∗ Corresponding author.

E-mail addresses: abakhtiary@uoc.edu , amir.h.bakhtiary@gmail.com (A.H.

Bakhtiary), alapedriza@uoc.edu (A. Lapedriza), dmasipr@uoc.edu (D. Masip).

tational complexity by cutting down on the amount of computa-

tion needed.

To this end we make use of 2 main observations: (1) the most

computationally expensive operation for these fully connected lay-

ers is matrix multiplication which occurs both during forward

propagation and backpropagation, and (2) the computations re-

lated to units with low activation can be avoided. This is because

we are only interested in units that are “turned on” and which will

lead to changes in the output. The same is true for backpropaga-

tion, units with extremely low values will have very low slope and

can be ignored or aggregated. This reasoning holds true for any

layer with a non-linearity function that applies a cut off on the

output values but the extra computation is more pronounced in

layers that are trained to have a sparse activation pattern.

Although methods for more efficient matrix multiplication ex-

ist [6] , these have not been applied to neural networks and, in

most cases, current implementations only lead to a modest sav-

ing in computational complexity of O (n 2.807) vs O (n 3). As a con-

sequence, the current implementations of neural networks have a

computational cost that grows linearly with the number of units.

To avoid the costs associated with multiplication of matrices

we propose to use Winner Takes All (WTA) hashing to identify the

units that will have sufficiently high amplitude before performing

the expensive matrix computations. Then we compute the exact

output of only these units, and use a default value for the rest of

the units. This way only a small number of units in the output of

the layer needs to be computed.

http://dx.doi.org/10.1016/j.patrec.2017.01.001

0167-8655/© 2017 Published by Elsevier B.V.

Please cite this article as: A.H. Bakhtiary et al., Winner takes all hashing for speeding up the training of neural networks in large class

problems, Pattern Recognition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.01.001

http://dx.doi.org/10.1016/j.patrec.2017.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
mailto:abakhtiary@uoc.edu
mailto:amir.h.bakhtiary@gmail.com
mailto:alapedriza@uoc.edu
mailto:dmasipr@uoc.edu
http://dx.doi.org/10.1016/j.patrec.2017.01.001
http://dx.doi.org/10.1016/j.patrec.2017.01.001

2 A.H. Bakhtiary et al. / Pattern Recognition Letters 0 0 0 (2017) 1–10

ARTICLE IN PRESS

JID: PATREC [m5G; January 10, 2017;22:8]

Furthermore, during the backpropagation phase, we only back-

propagate through units that were activated and also units that

were not activated but should have been. We can do this because

the gradient of the none active units is zero or near zero depend-

ing on the non-linearity used. Therefore, not computing the dot

products where these zero values are present saves computation

without changing the final computed derivatives.

The WTA hashing technique has been already used in vision

tasks. In particular, it was successfully applied on a HOG-based ob-

ject detector [7] in order to detect 10 0,0 0 0 object classes. This was

done by first training a part based model using a support vector

approach [8] , then WTA hashing was used to speed up the detec-

tion phase of the algorithm.

To contrast our work with [7] , we are using the WTA hash to

speed up layers of a deep neural network instead of a support vec-

tor machine. Furthermore we use WTA to prune the active units

during both forward and backward propagation passes. This results

in speedups both during training and testing.

To show the viability of our approach, we have applied this

technique to the final layer of a CNN that performs classification

on a very large number of classes. The first seven layers of our net-

work is the same as the AlexNet from Krizhevsky et al. [1] which is

the basis of many of the CNNs used for computer vision. Further-

more, during training we have used pretrained weights for these

layers and kept them fixed during training.

The difference between this work and AlexNet is that we have

replaced the last fully connected layer, the classification layer, with

our WTA hashing layer. Also to showcase the strength of our ap-

proach, we have opted to use the network to perform classification

on a dataset that contains 21K classes as opposed to the 1K classes.

We train this network to classify the ImageNet-21K dataset

and reach a top-1 accuracy of 20.3%. To put this into perspec-

tive, [9] achieves an accuracy of 10.5% on the ImageNet-21K

dataset. They use manually defined features and a fine tuned linear

classifier. In [10] an accuracy of 15.8% is achieved. They first train

a deep stack of autoencoders in an unsupervised fashion and then

use the resulting network to derive features. A logistic classifier is

then used to perform classification on these features.

In [11] it is shown how a CNN can achieve an accuracy of 29.8%

on the ImageNet-21K dataset. This work uses an architecture sim-

ilar to the AlexNet, but it differs from our approach in that it

trains the complete network as opposed to using fixed pretrained

weights. It needs to be pointed out that although this method

achieves a higher accuracy, it requires training for 10 days on 62

machines. This is in contrast to our method where the training is

performed on one machine in under 10 h.

In our work we will demonstrate a 6 fold speedup during train-

ing of the classification layer. But if the classification layer is large

enough, the WTA hashing layer can speed up the training of the

whole network.

The green bars in Fig. 1 show the distribution of the computa-

tional cost of the AlexNet architecture as we change the number

of classes. In the original AlexNet configuration, with 10 0 0 classes,

the computational cost of the classification layer is small compared

to the rest of the network. As we increase the number of classes

from 10 0 0 in Fig. 1 a to 10,0 0 0 in Fig. 1 b or 10 0,0 0 0 in Fig. 1 c

the cost of the output layer quickly dominates the computational

cost of the network. This cost becomes more pronounced when the

output size of layer 7 is increased because the computation com-

plexity of a layer is linear in both its input size and its output size.

The red bars in Fig. 1 depict the computational cost of the

output layer when we use WTA to prune the extra neurons. Our

approach requires much less computation and this improvement

allows using the same network architecture on very large num-

bers of classes without significantly increasing the overall compu-

tational cost.

Fig. 1. Distribution of computational cost on AlexNet [1] as we vary the number

of output classes from (a) 1,0 0 0, (b) 10,0 0 0 and (c) 10 0,0 0 0. In red we show the

computational cost with our proposed method. (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this

article.)

In the next section we will give a brief overview of WTA hash-

ing. We will follow with a section on how WTA can be used to

speed up layers with sparse activation patterns. Section 3 dis-

cusses the theoretical computational complexity of the WTA hash-

ing layer. Section 4 presents our experiments. Here we will show

how much computational savings are ideally possible, and how

WTA is able to realize these saving. Also we present an experi-

ment showing how WTA can be used to achieve a 6 fold speedup

when training and testing a classification layer on 21K classes. The

final Section 5 , contains the conclusions of this paper.

1. Winner takes all (WTA) hashing

The Winner Takes All, WTA, hashing is a generalization of the

minhash approach. Minhash was designed for finding similar doc-

uments in a large set of documents and has been shown to be ef-

fective for data mining in large datasets [12] .

The WTA hash itself is a part of the Locality Sensitive Hashing

(L SH) family. L SH schemes assign similar values to vectors that are

close to each other and were originally designed to address the

nearest neighbor problem [13] .

WTA hashing works by transforming the input feature space

into binary codes. In the resulting space, the Hamming distance

closely correlates with rank similarity measure [14] . Furthermore,

the obtained binary descriptors show invariance given slight per-

turbations of the original data, which makes the method a suitable

basis for retrieval algorithms. Also, the WTA is based on random

permutations on the data components and does not require any

data-driven learning.

Fig. 2 summarizes the computation of one WTA hash. Each hash

is composed of N s sections, each one being characterized by a dif-

ferent permutation. That is, each section α belonging to each hash

i , has its own permutation denoted by the function permute i, α .

To compute a hash, we permute the input vector [x 1 , x 2 , . . . , x K]

by indexing the incoming data through the hash’s permutation ar-

ray. Then for each section, the N e first elements of the permuted

vector are selected: [x ′
1
, x ′

2
, . . . , x ′

N e
] . We compare these elements

and the index of the largest element is recorded, � α . This process

is repeated N s times to arrive at N s hash sections. These sections

are concatenated to form a single hash h i .

Please cite this article as: A.H. Bakhtiary et al., Winner takes all hashing for speeding up the training of neural networks in large class

problems, Pattern Recognition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.01.001

http://dx.doi.org/10.1016/j.patrec.2017.01.001

Download English Version:

https://daneshyari.com/en/article/4970089

Download Persian Version:

https://daneshyari.com/article/4970089

Daneshyari.com

https://daneshyari.com/en/article/4970089
https://daneshyari.com/article/4970089
https://daneshyari.com

