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a b s t r a c t 

Matching datasets of multiple modalities has become an important task in data analysis. Existing meth- 

ods often rely on the embedding and transformation of each single modality without utilizing any cor- 

respondence information, which often results in sub-optimal matching performance. In this paper, we 

propose a nonlinear manifold matching algorithm using shortest-path distance and joint neighborhood 

selection. Specifically, a joint nearest-neighbor graph is built for all modalities. Then the shortest-path 

distance within each modality is calculated from the joint neighborhood graph, followed by embedding 

into and matching in a common low-dimensional Euclidean space. Compared to existing algorithms, our 

approach exhibits superior performance for matching disparate datasets of multiple modalities. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The abundance of data in the modern age has made it crucial to 

effectively deal with large amounts of high-dimensional data. For 

the purpose of data analysis, it is imperative to apply dimension 

reduction to embed data into a low-dimensional space for subse- 

quent analysis. Traditional linear embedding techniques have solid 

theoretical foundations and are widely used, e.g., principal com- 

ponent analysis (PCA) [22,44] and multidimensional scaling (MDS) 

[5,7,45] for datasets of a single modality, and canonical correlation 

analysis (CCA) [1,20] for datasets of multiple modalities. 

However, real datasets often exhibit nonlinear geometry, dis- 

covering which can be advantageous for subsequent inference. 

Many manifold learning algorithms have been proposed to learn 

the intrinsic low-dimensional structure of nonlinear datasets, 

including Isomap [38,43] , locally linear embedding (LLE) [30,31] , 

Hessian LLE [9] , Laplacian eigenmaps [2,18] , local tangent space 

alignment (LTSA) [50,51] , among many others. Most of them start 

with the assumption that the data are locally linear, explore the 

local geometry via the nearest-neighbor graph of the sample data, 

transform the data using the neighborhood graph, and eventually 

learn the low-dimensional manifold by optimizing some objective 

function. These nonlinear embedding algorithms usually serve 
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as a preliminary feature extraction step that enables subsequent 

inference. They have been used successfully in object recognition 

and image processing. 

In this paper, we consider the manifold matching task for 

datasets of multiple modalities, which is traditionally modeled 

by multiple dependent random variables. Conventional methods 

for identifying the relationship among multiple random variables 

are still very popular in theory and practice, such as canonical 

correlation [17,20,23] and Procrustes transformation [14,15,36,37] . 

However, it has become a much more challenging task to match 

real datasets of multiple modalities from disparate sources due to 

their complex dependency structures, such as the same document 

in different languages, an image and its descriptions, or networks 

of the same actors on different social websites. 

There have been many recent endeavors regarding data fusion 

and manifold matching [25,29,33,35,40,4 8,4 9] . Similar to dimen- 

sion reduction for datasets of a single modality, manifold matching 

can serve as a feature extraction step to explore datasets of 

multiple modalities, and has also been shown to help subsequent 

inference in object recognition [24] , information retrieval [39] , and 

transfer learning [28] . Furthermore, the matching task is important 

on its own and has been applied to explore multiple graphs 

and networks [26,27,47] . One such application is seeded graph 

matching, where two large networks are collected but only a 

percentage of training vertices have known correspondence. Then 

the remaining vertices need to be properly matched to uncover 

potential correspondence and benefit later inference. 
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Due to the success of nonlinear embedding algorithms for 

datasets of a single modality, it is often perceived that these 

algorithms can be directly combined into the matching framework 

to improve the matching performance when one or more modal- 

ities are nonlinear. A naïve procedure is to pick one nonlinear 

algorithm, apply it to each modality separately, and match the 

embedded modalities. But such a simplistic procedure does not 

always guarantee a good matching performance, since many non- 

linear embedding algorithms only preserve the local geometry up 

to some affine transformation [13] . Furthermore, using nonlinear 

transformations separately can even deteriorate the matching per- 

formance when compared to using simple linear transformations, 

as shown in our numerical simulations. 

To tackle the problem, we propose a manifold matching algo- 

rithm using shortest-path distance and joint neighborhood selec- 

tion. By utilizing a robust distance measure that approximates the 

geodesic distance, and effectively combining the correspondence 

information into the embedding step, the proposed algorithm can 

significantly improve the matching quality from disparate data 

sources, compared to directly take linear or nonlinear embeddings 

for matching. All code and data are made publicly available. 1 

2. Manifold matching 

In this section, the matching framework and evaluation criteria 

are first introduced. Next we present the main algorithm, followed 

by relevant implementation details. Additional discussions are 

offered on issues that can affect the matching performance. 

2.1. The matching framework 

Suppose n objects are measured under two different sources. 

Then X l = { x il } ∈ �l for l = 1 , 2 are the actual datasets that are 

observed / collected, with x i 1 ∼ x i 2 for each i ( ∼ means the two 

observations are matched in the context). Thus X 1 and X 2 are the 

two different views / modalities of the same underlying data. This 

setting is extendable to datasets of more than two modalities, but 

for ease of presentation we focus mainly on the matching task of 

two modalities. 

�1 and �2 are potentially very different from each other, such 

as a flat manifold and its nonlinear transformation, an image and 

its description, or texts under different languages. A typical ex- 

ample is the social network, where many users have accounts on 

Youtube, Facebook, Twitter, etc. People sometimes post different 

contents and connect with different groups on each network site, 

such that data analysis of better quality is only possible when 

multiple accounts of the same person are combined. Some users 

already linked their accounts from different places, or unique user 

information are filled (like actual name, occupation), certain ac- 

counts can be automatically matched, providing a set of matched 

training data; but all the other accounts need to be matched 

by machine (as manual match is too expensive for millions of 

accounts), presenting a set of testing data from each website. 

We assume x il ∈ �l is endowed with a distance measure �l 

such that �l (i, j) = dist(x il , x jl ) . To match multiple modalities, we 

find two mappings ρl : �l → R 

d , l = 1 , 2 such that the mapped 

data ˆ X l = { ρl (x il ) } are matched into a common low-dimensional 

Euclidean space R 

d . A simple example of ρ l is MDS (e.g., classical 

MDS first doubly centers the distance matrices, followed by eigen- 

decomposition and keeping the top d eigenvalues and eigenvectors 

to yield the embedding) followed by CCA (find two orthogonal d 

× d transformation matrices for each data set to maximize their 

correlation), which is a linear embedding and matching procedure. 

1 https://github.com/cshen6/MMSJ . 

Once the mappings are learned from the training data, the 

learned mappings ρ l can be applied to match any new observa- 

tions y 1 ∈ �1 and y 2 ∈ �2 of unknown correspondence, i.e., com- 

pute ˆ y l = ρl (y l ) ∈ R 

d , and declare y 1 and y 2 as matched if and only 

if ˆ y 1 is sufficiently close to ˆ y 2 in the common space. Ideally, a good 

matching procedure should be able to correctly identify the corre- 

spondence of the new observations, i.e., if the testing observations 

are truly matched in the context, the mapped points should be 

very close to each other in R 

d . If the testing observations are not 

matched, the mapped points should be far away from each other. 

To evaluate a given matching algorithm, a natural criterion is 

the matching ratio used in seeded graph matching [27] . Assume 

that there exist multiple testing observations in each space; and 

for each testing observation y 1 in �1 , there is a unique testing 

observation y 2 ∈ �2 such that y 1 ∼ y 2 . Then they are correctly 

matched if and only if ˆ y 2 is the nearest neighbor of ˆ y 1 among all 

other testing data from �2 , and vice versa. The matching ratio 

equals the percentage of correct matchings, and a higher matching 

ratio indicates a better matching algorithm. 

The matching ratio based on nearest neighbor is often conser- 

vative, and can be a very small number when matching disparate 

real datasets. In practice, it is often more interesting to consider 

all neighbors within a small threshold, or rank multiple neighbors 

up to a limit. To that end, the testing power of the statistical 

hypothesis H 0 : y 1 ∼ y 2 considered in [29] is another suitable 

criterion, which directly takes the Euclidean distance ‖ ̂  y 1 − ˆ y 2 ‖ 
as the test statistic. To estimate the testing power for given data, 

we first split all observations into matched training data pairs, 

matched testing data pairs, and unmatched testing data pairs. 

After learning ρ l from the matched training data and applying 

them to all testing data, the test statistic under the null hypothesis 

can be estimated from the matched testing pairs, and the test 

statistic under the alternative hypothesis can be estimated from 

the unmatched testing pairs. The testing power at any type 1 

error level is directly estimated from the empirical distributions 

of the test statistic, and a higher testing power indicates a better 

manifold matching algorithm. 

We used both the testing power and the matching ratio for 

evaluation in the numerical experiments, and in most cases they 

yield the same interpretation regarding which method has a 

better matching performance. Note that if the critical value at 

a given type 1 error level is used as a distance threshold, the 

testing power equals the probability that the distance between the 

matched pair is no larger than the distance threshold. Since the 

matching ratio only considers the nearest neighbor of the matched 

pair, the testing power is never smaller than the matching ratio. 

2.2. Main algorithms 

Our methodology is henceforth referred to as MMSJ. 

Algorithm 1 serves to learn the matching transformations from 

the matched training data, while Algorithm 2 maps any testing 

observation onto the learned manifolds. 

Given the distance matrices �l for the training data 

{ X l , l = 1 , 2 } , we first construct an n × n binary graph G by 

k-nearest-neighbor using the sum of normalized distance matrices 
∑ 2 

l=1 
�l ‖ �l ‖ F , i.e., G (i, j) = 1 if and only if 

∑ 

l 

�l (x il ,x jl ) 

‖ �l ‖ F is among the 

smallest k elements in the set { ∑ 

l 

�l (x il ,x ql ) 

‖ �l ‖ F , q = 1 , . . . , n } . 
Next, for each modality X l , we calculate the shortest-path 

distance matrix �G 
l 

based on the normalized �l and the joint 

graph G , i.e., solve the shortest-path problem using the weighted 

graph 

�l ◦G 

‖ �l ‖ F , where ◦ denotes the Hadamard product. Then we 

apply MDS to embed �G 
l 

into R 

d for each l , followed by the Pro- 

crustes matching to yield the matched data ˆ X l , i.e., the Procrustes 

https://github.com/cshen6/MMSJ


Download English Version:

https://daneshyari.com/en/article/4970130

Download Persian Version:

https://daneshyari.com/article/4970130

Daneshyari.com

https://daneshyari.com/en/article/4970130
https://daneshyari.com/article/4970130
https://daneshyari.com

