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a b s t r a c t 

In this paper we deal with the problem of improving the recent milestone results on the estimation 

of the generalization capability of a randomized learning algorithm based on Differential Privacy (DP). 

In particular, we derive new DP based multiplicative Chernoff and Bennett type generalization bounds, 

which improve over the current state-of-the-art Hoeffding type bound. Then, we prove that a random- 

ized algorithm based on the data generating dependent prior and data dependent posterior Boltzmann 

distributions of Catoni (2007) [10] is Differentially Private and shows better generalization properties than 

the Gibbs classifier associated to the same distributions. With this aim, we also exploit a simple example. 

Finally, we discuss the advantages of using the Thresholdout procedure, one of the main results gener- 

ated by the DP theory, for Model Selection and Error Estimation purposes, and we derive a new result 

which exploits our new generalization bounds. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The problem of learning from data while preserving the privacy 

of individual observations has a long history and spans over mul- 

tiple disciplines [21,29,55] . One way to preserve privacy is to cor- 

rupt the learning procedure with noise without destroying the in- 

formation that we want to extract. Differential Privacy (DP) is one 

of the most powerful tools in this context [16,21] . DP addresses the 

apparently self-contradictory problem of keeping private the infor- 

mation about an individual observation while learning useful infor- 

mation about a population. In particular, a procedure is DP if and 

only if its output is almost independent from any of the individ- 

ual observations. In other words, the probability of a certain out- 

put should not change significantly if one individual is present or 

not, where the probabilities are taken over the noise introduced by 

the procedure. In the last years, DP has been deeply studied from 

a theoretical point of view [11,20,22,33–35,38,43,49,51,52,57] and 

∗ Corresponding author. 

E-mail address: luca.oneto@unige.it (L. Oneto). 

exploited to develop new learning strategies for solving real world 

problems [7,12,13,24,31,32,50,56] . 

Another key problem in learning from data is the one of Model 

Selection (MS) and Error Estimation (EE) which aim at tuning 

and assessing the performance of the learning procedure [1] . Re- 

sampling techniques like hold out, cross validation and bootstrap 

[1] are often used by practitioners because work well in many 

situations, but they may lead to severe problems of false discov- 

ery [48] and they do not give insight into the learning process. 

The first seminal work in filling these gaps is the one of Vap- 

nik [54] about the Vapnik–Chervonenkis Dimension, which states 

the conditions under which a set of hypotheses is learnable. Later 

these results have been improved with the introduction of the 

Rademacher Complexity [3] together with its localized counter- 

part [2] . The theory of Floyd and Warmuth [23] , which tightly 

connects compression to learning, later extended by Langford and 

McAllester [37] , was another step forward in the direction of 

understanding the learning properties of an algorithm. A break- 

through was made with the Algorithmic Stability [9,47] , which 

states the properties that a learning algorithm should fulfill in or- 

der to achieve good generalization performance. Finally, it is well 
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known that combining the output of different learning procedures 

results in much better performance than using any one of them 

alone, but it is hard to combine them appropriately in order to ob- 

tain good performance [10,42] and it is not trivial the assessment 

of the performance of the resulting learning procedure [4,27,39,53] . 

The PAC-Bayes theory is one of the most powerful tool in this con- 

text. For example in classification problems, it allows to bound 

the risk of the Gibbs Classifier (GC) and the Bayes Classifier (BC) 

and has inspired the development of new theoretically grounded 

weighting strategies such as the one developed by Catoni [10] . In 

particular he proposed to use a new data dependent weighting 

strategy which has shown many strong and interesting theoretical 

properties [45] . 

DP allowed to reach a milestone result by connecting the field 

of privacy preserving data analysis and the generalization capabil- 

ity of a learning algorithm. From one side it proved that a learning 

algorithm which shows DP properties also generalizes [18] . From 

the other side, if an algorithm is not DP, it allowed to state the con- 

ditions under which a hold out set can be reused without risk of 

false discovery through a DP procedure called Thresholdout [17,19] . 

In this paper we make an additional step forward in this direc- 

tion by developing DP based multiplicative Chernoff and Bennett 

type generalization bounds, reported in Section 2 , which improve 

over the current state-of-the-art Hoeffding type bound. Then, in 

Section 3 we show that a randomized algorithm based on the work 

of Catoni [10] has interesting DP properties and shows better gen- 

eralization performances than the associated GC by also exploiting 

a simple example. Finally, in Section 4 we discuss the advantages 

of exploiting the Thresholdout for MS and EE purposes and we de- 

rive a novel result which exploits our newly derived generalization 

bounds reported in Section 2 . Section 5 concludes our work. 

2. DP and generalization 

In order to present our novel results, we first recall some pre- 

liminary definitions [18,21,54] . Let us consider an input space X 

and an output space Y = {−1 , +1 } , since in this work we will 

deal with binary classification problems. We indicate with P X , P Y , 
and P Z respectively the distributions over X , Y, and the carte- 

sian product between the input and the output space Z = X × Y . 

From Z we observe a series of n i.i.d. samples s = { z 1 , . . . , z n } = 

{ (x 1 , y 1 ) , . . . , (x n , y n ) } , where ∀ i ∈ I n = { 1 , 2 , 3 , . . . , n } we have x i ∈ 

X , y i ∈ Y, and z i ∈ Z . Moreover, Z is a random variable sampled 

from Z according to P Z whereas s is a dataset inside the space of 

all the possible datasets S = Z 

n and P S is the distribution of prob- 

ability generated by P Z over S . Analogously to Z , S is a random 

variable sampled from S according to P S . We denote with ˙ s the 

neighborhood dataset of s such that s = { z 1 , . . . , z i −1 , ˙ z i , z i +1 , . . . , z n } 
where i may assume any value in I n and ˙ z i i.i.d. with z i . We de- 

note with S̆ a subset of the space of datasets S : S̆ ⊆ S . Let us 

define with f : X → [ −1 , 1] a function in a space F of all the 

possible functions and F̆ ⊆ F . A randomized algorithm A : S → 

F maps a dataset s ∈ S in a function f ∈ F with nondeterminis- 

tic rules that can be encapsulated in a distribution P A 

over F
given s ∈ S . We also define an operator D̆ which maps a func- 

tion f ∈ F into a subset of all the possible datasets S̆ . For exam- 

ple, D̆ can be seen as an inverse operator of A which, given an 

f ∈ F , tries to retrieve the datasets S̆ that may have generated f . 

The accuracy of f ∈ F in representing P Z is measured with ref- 

erence to a loss function � : F × Z → [0 , 1] . Hence, we can define 

the true risk of f , namely generalization error, as L ( f ) = E Z � ( f, Z ) , 

together with its variance V ( f ) = E Z [ � ( f, Z ) − L ( f )] 2 . Since P Z is 

unknown, L ( f ) and V ( f ) cannot be computed. Therefore, we have 

to resort to their empirical estimators, respectively the empirical 

error ̂  L s n ( f ) = 1 /n 
∑ n 

i =1 � ( f, z i ) , and the empirical variance ̂ V s n ( f ) = 

1 / n (n − 1) 
∑ n 

i =1 

∑ n 
j= i + 1 [ � ( f, z i ) − � ( f, z j )] 2 [41] . 

2.1. State-of-the-art 

Before presenting our advances with respect to the state-of-the- 

art we need to recall the current results that can be retrieved from 

the literature. In particular we need to recall the definition of DP. 

Definitions 1 ( [21] ) . A randomized algorithm A is ( ε, δ)- 

Differentially Private if ∀ ̆F ⊆ F and ∀ s ∈ S we have that 

P A 

{ A (s ) ∈ F̆ } ≤ e εP A 

{ A ( ̇ s ) ∈ F̆ } + δ. 

Note that in this work we will only deal with ( ε, 0)- 

Differentially Private algorithms that we will denote as ε-DP for 

brevity. 

Since we are dealing with ε-DP algorithms it is useful to de- 

rive the following lemma which gives an alternative simpler and 

more intuitive definition of ε-DP. Basically Lemma 1 says that if 

the probability of choosing a function does not change too much 

if the algorithm is fed with a dataset s or with its neighborhood ˙ s 

then the algorithm is private. The latter will be used later in the 

paper. 

Lemma 1. A randomized algorithm A is ε-DP if ∀ f ∈ F and ∀ s ∈ S
we have that P A 

{ A ( s ) = f } ≤ e εP A 

{ A ( ̇ s ) = f } . 
Proof. In order to prove our statement note that 

P A 

{
A ( s ) ∈ F̆ 

}
= 

∫ 
F̆ P A 

{ A ( s ) = f } df (1) 

≤ ∫ 
F̆ e 

ε
P A 

{ A ( ̇ s ) = f } df = e εP A 

{
A ( ̇ s ) ∈ F̆ 

}
. 

By looking at Definition 1 the statement is proved. �

The milestone result of Dwork et al. [18] shows that an ε-DP 

algorithm generalizes. In particular two main results are derived. 

The first one is very general and shows that if a function D̆ ( f ) is 

defined for each element f ∈ F and the probability that S ∈ D̆ ( f ) 

is small, then the probability remains small if f is chosen based on 

S and A . In other words the probability that S ∈ D̆ (A ( S )) remains 

small. 1 

Theorem 1 ( [18] ) . Let A be an ε-DP. Let us suppose that P S { S ∈ 

D̆ ( f ) } ≤ β, ∀ f ∈ F . Then, for ε ≤
√ 

ln ( 1 β) / 2 n we have that P S , F { S ∈ 

D̆ ( F ) } ≤ 3 
√ 

β . 

The second result, which builds upon Theorem 1 , shows that 

the empirical error of a function chosen with an ε-DP algorithm is 

concentrated around its generalization error. 

Corollary 1 ( [18] ) . Let A be an ε-DP, then for any t > 0, setting 

ε ≤
√ 

t 2 − ln (2) / 2 n ensures that 

P S , F 

{| L ( F ) −̂ L S n ( F ) | ≥ t 
}

≤ 3 

√ 

2 e −nt 2 . 

The result of Corollary 1 can be reformulated in a more conve- 

nient expression, which is more suited for the subsequent analysis. 

Lemma 2. Let A be an ε-DP, then we can state that 

P S , F 

{ 

| L ( F ) −̂ L S n ( F ) | ≥ ε + 

√ 

1 /n 

} 

≤ 3 e −nε2 

. 

Proof. Let us consider Corollary 1 . By setting ε = 

√ 

t 2 − ln (2) / 2 n , 

which is the most convenient choice since it leads to a 

tighter bound, we have that t 2 = ε2 + ln (2) / 2 n . By noting that √ 

ε2 + ln (2) / 2 n ≤ ε + 

√ 

1 /n , the statement is proved. �

The limitation of Corollary 1 (or Lemma 2 ) is the slow conver- 

gence rate O (1 / 
√ 

n ) . When the empirical error is small we would 

like to retrieve a Chernoff type result [14] . Instead, when the vari- 

ance is small, a Bernstein or Bennet bound would be preferred 

1 From now on with a little abuse of notation we will identify F = A ( S ) . 
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