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a b s t r a c t 

Sparse representation-based classifier (SRC) and kernel sparse representation-based classifier (KSRC) are 

founded on combining pattern recognition and compressive sensing methods and provide acceptable re- 

sults in many machine learning problems. Nevertheless, these classifiers suffer from some shortcomings. 

For instance, SRC’s accuracy drops against samples from same directional classes or KSRC’s output de- 

clines when data is not normally distributed in kernel space. This paper introduces nonparametric kernel 

sparse representation-based classifier (NKSRC) as a generalized framework for SRC and KSRC. First, it ap- 

plies kernel on samples to overcome data directionality and then employs nonparametric discriminant 

analysis (NDA) to reduce data dimensionality in kernel space alleviating concern about data distribution 

type. The experimental results of NKSRC demonstrate its superiority over SRC and KSRC–LDA and its equal 

or superior performance with respect to KSRC–PCA on some synthetic, four well-known face recognition 

and several UCI datasets. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

One of the most recent classifiers which provides appropriate 

performance in various fields of pattern recognition problems is 

sparse representation-based classifier (SRC) [23] . SRC was founded 

on compressive sensing (CS) theory. CS tries to find the spars- 

est solution of an underdetermined linear equations system which 

has infinite answers. CS procedure utilizes L 0 -norm minimization 

to find the unique sparse solution of equations system [5,1] . Since 

L 0 -norm function is discontinuous; the minimization process con- 

fronts some obstacles and often may be infeasible. In this situa- 

tion, the approximations like L 1 -norm function which results also 

in sparse solution and is appropriate for signal recovery could be 

used as an alternative for L 0 -norm function. Some cost functions 

like basis pursuit (BP) [8] or least absolute shrinkage and selec- 

tion operator (LASSO) [22] use this approximation to reach the 

sparsest solution. SRC has found various applications in which non- 

stationary signals were investigated. In EEG-based brain computer 

interfaces, SRC-based methods provided better performance with 

respect to the other approaches from both classification and ro- 

bustness points of view [20,21] . 

Moreover, in different disease assessment problems like tongue 

geometric feature analysis [24] , SRC was utilized for distinguishing 

between healthy and disease patterns. 
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In spite of remarkable performance of SRC or its extended ver- 

sions like extended SRC [9] in some face recognition databases 

[23] , its shortcomings in some pattern recognition problems, in 

particular those in which samples come from same directional 

classes are noticeable [25] . When distributions of classes are in the 

same direction, some linear relationships can be found between 

samples from different classes. In other words, a test sample may 

not only be represented as a linear combination of some samples 

from its own class, but also it can be sparsely represented by linear 

combination of some samples from other classes. In the latter case, 

the residuals of other classes become significant and SRC misclas- 

sifies the corresponding test sample. One of the inventive manners 

for enhancing SRC’s performance in this situation is utilization of 

kernel space [16] . Accordingly, samples are carried to kernel space 

and due to kernel’s nonlinearity, the classes lose their directional- 

ity. Samples in kernel space are often of high or even infinite di- 

mensionality and L 1 -minimization in this space is impractical. One 

of the most attractive solutions is adding a dimensionality reduc- 

tion (DR) stage in kernel space before optimizing the correspond- 

ing cost function. This procedure was introduced as kernel sparse 

representation-based classifier (KSRC) by Zhang et al. [25] . This ap- 

proach uses reputed DR methods like linear discriminant analysis 

(LDA) [13] , principal component analysis (PCA) [14] and random 

projection (RP) [4] . 

When kernel is applied on samples, there is no guarantee that 

the distributions of primary dataset are preserved and if the data 

has not Gaussian distribution in kernel space, parametric DR ap- 

proaches like LDA or PCA would be compromised theoretically. On 
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the other hand, RP is not the most accurate way for DR in every 

situation. Thus, other DR methods that do not rely on data distri- 

butions are preferable. One of the remarkable procedures that is 

less dependent on distribution of samples, is nonparametric dis- 

criminant analysis (NDA) [3,12] . 

This paper proposes the nonparametric kernel sparse 

representation-based classifier (NKSRC) approach to alleviate 

kernel space distribution dependency of KSRC. The new approach 

is demonstrated to outperform its predecessors in terms of 

classification accuracy in several pattern recognition datasets. 

In Section 2 , some related works are reviewed. In Section 3 , 

NKSRC method is introduced. Section 4 includes experimental re- 

sults of NKSRC method on some artificial datasets, four face recog- 

nition databases and also some datasets from UCI machine learn- 

ing repository [11] . Finally, Section 5 concludes from the results of 

the paper. 

2. Related works 

2.1. Sparse representation-based classifier 

SRC tries to represent a test sample as a linear combination of 

the training samples from one class. Let the training set matrix be 

X ∈ R m × n and include samples from c classes with m dimensions. 

For a test vector x ∈ R m , the SRC problem is defined as follows: 

min 

α
‖ 

α‖ 1 s . t . x = X α (1) 

where α ∈ R n is a sparse vector that contains only nonzero ele- 

ments corresponding to the test sample’s class. By computing class’ 

residuals for the test sample and finding minimum of them, the la- 

bel of the test data is determined 

ˆ y = arg min 

i =1 ,...,c 
r i (x ) = 

∥∥x − X δi 

∥∥
2 

(2) 

where δi = [ δi ( α1 ) , δi ( α2 ) , . . . , δi ( αn ) ] 
t is the selection function for 

the i -th class in which 

δi 

(
α j 

)
= 

{
α j y j = i 
0 o.w. 

(3) 

In the above equation, y j ∈ { 1 , 2 , . . . , c } is the class label cor- 

responding to the j-th element in the sparse vector. However, in 

many practical problems the test sample is polluted with bounded 

energy noise and in real world situation, the SRC constraint alters 

as 

min 

α
‖ 

α‖ 1 s . t . ‖ 

x − X α‖ 2 ≤ ε (4) 

where ɛ is a tiny positive number representing the noise en- 

ergy. SRC exhibited phenomenal performance particularly in some 

face recognition problems [23] . Nevertheless, its accuracy declines 

when the training samples come from same directional classes. In- 

deed, when the means of more than two classes are laid on a 

straight line, they are considered as directional. In such circum- 

stance, SRC may represent a test sample not only as a linear com- 

bination of constituents from its own class, but also from other 

directional classes. Obviously, this representation lacks the crucial 

sparsity property and consequently degrades the classification ac- 

curacy. Therefore, other tricks must be added to SRC to improve its 

yield. 

2.2. Kernel sparse representation-based classifier 

In KSRC, at first we apply a kernel function to the dataset and 

as a result samples are taken to a new space in which they are 

not in the same direction. Consequently, SRC could be utilized in 

the kernel space. The dimensionality of training and test samples 

in the new space relies on the type of kernel function. In addition, 

the kernel function must satisfy Mercer’s conditions like continu- 

ity, symmetry and being positive semidefinite. 

Some popular kernels that meet Mercer’s condition are sigmoid 

kernel, polynomial kernel and Gaussian radial basis function (RBF). 

Each of them transfers sample to a specific higher dimensional 

space which is determined by the form of the corresponding ker- 

nel function. For instance, RBF kernel is defined as 

K ( x , y ) = e −γ ( ‖ x −y ‖ 2 2 ) (5) 

where γ is a positive constant called RBF kernel parameter. More- 

over, it can be proved that RBF kernel takes every sample to an 

infinite dimensional space. This issue is not practical in investiga- 

tions of different classifiers. Now problem with the bounded en- 

ergy noise on test sample can be expressed as 

min 

α
‖ 

α1 ‖ 

s . t . 
∥∥φ( x ) − �α

∥∥
2 ≤ ε (6) 

where φ( x ) ∈ R D is the test sample in kernel space and � ∈ R D × n 

is a training dictionary which is obtained by applying kernel on X . 

However, in many cases after applying kernel, the dimensionality 

of kernel space ( D ) is much greater than sample’s original dimen- 

sionality ( m ) which leads to time consuming procedure or even in- 

feasible optimization. To overcome this inconvenient, a dimension- 

ality reduction step must be added which converts the problem to 

a feasible optimization. The ultimate form of KSRC can be formu- 

lated as 

min 

α
‖ 

α‖ 1 s . t . 
∥∥P 

t φ( x ) − P 

t �α
∥∥

2 ≤ ε (7) 

where t denotes the transpose of matrix and P ∈ R D × d ( d �D ) 

is one of LDA or PCA transforms. However, in general after apply- 

ing kernel, the distribution of samples in kernel space differs from 

their distribution in the initial space and this matter may require 

employing other DR approaches that are less dependent on sam- 

ples’ distribution. 

3. Nonparametric kernel sparse representation −based classifier 

In NKSRC algorithm, at first the data is transferred to a higher 

dimensional space using a kernel function which satisfies the Mer- 

cer’s theorem. If φ( x ) and � are the test sample and training dic- 

tionary in kernel space respectively, then the optimization problem 

in ( 4 ) will be rewritten as: 

min 

α
‖ 

α‖ 1 s . t . 
∥∥φ( x ) − �α

∥∥
2 ≤ ε (8) 

φ
t 
( x ) φ( x ) = K ( x , x ) (9) 

where K is the kernel function. In general, kernel feature space is 

high (possibly infinite) dimensional. Now, NDA is applied to reduce 

the number of equations for optimization. Let T ∈ R d × D be the 

NDA transform for DR in which d and D represent the reduced and 

kernel space dimensionality, respectively. Consequently, the NKSRC 

problem could be shown as: 

min 

α
‖ 

α‖ 1 s . t . 
∥∥T φ( x ) − T �α

∥∥
2 ≤ ε (10) 

In NDA, the transformation matrix T is obtained from lin- 

ear combination of training samples in kernel space. Zhang et al. 

[25] showed that when projection matrix incorporates linear com- 

bination of training samples and D � n , ( 10 ) can be solved in n 

dimensional space using kernel function. Here, we are inclined to 

show how T is obtained from training samples and also how it is 

not dependent on sample’s distributions. In contrast to parametric 

DR transforms, T which is obtained from NDA is not founded on 

Gaussian assumption of data. Transformation matrix T uses near- 

est neighbor (NN) [15] to define within and between class scatter 

matrices and then optimizes the cost function for maximizing the 
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