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a b s t r a c t 

We present a Markov Random Field (MRF) based skeleton model for object shape and employ it in a 

probabilistic chamfer-matching framework for shape based object detection. Given an object category, 

shape hypotheses are generated from a set of sparse (coarse) skeletons guided by suitably defined unary 

and binary potentials at and between shape parts. The Markov framework assures that the generated 

samples properly reflect the observed or desired shape variability. As the model employs a sparsely sam- 

pled skeleton, the shape hypotheses are in the form of linear boundary segments; hence, matching can 

be performed using Directional Chamfer Matching. As the number of states that each MRF node can take 

is small, the matching process is efficient. Experiments with giraffe and swan categories of the ETHZ 

Dataset demonstrate that the method perform well in the case of articulated objects. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Deciding on whether any instance of a certain object category 

does or does not exist in a given image, and (if it does) estimat- 

ing a bounding box containing the respective object instance is a 

task of practical importance. As such, this task, which is named as 

object detection, received attention from several researchers. There 

are two core interrelated computational processes: constructing a 

model of the object and searching the model in the image. A key 

decision to make is which cue to rely on for detecting an arbitrary 

instance of a certain object class. In this work, our focus is on de- 

tecting objects using only shape cues; more specifically, on shape 

based detection of articulated objects. 

As we are particularly interested in articulated objects, it is im- 

portant that the constructed shape model is flexible enough to 

generate possible variations of the shape due to articulated mo- 

tion of the object and the model parameters expressing variations 

due to articulated motion are efficiently and effectively computable 

from a given set of example shapes (even when there are only a 

few). This motivates us to adopt a shape skeleton based model. 

Shape skeletons provide an abstraction of the object that expresses 

its articulating components and relations among them. Our skele- 

tal representation is a set of sparsely sampled and ordered skele- 

tal points with associated parameters to define the radii of the in- 
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scribed maximal balls and the boundary locations at which the re- 

spective maximal balls touch to. Hence, the object contour is rep- 

resented by a finite number of boundary points producing a linear 

approximation (we later clarify the importance of linear approxi- 

mation), which are located at the positions described by these pa- 

rameters. The meaning of a point with the same index stays the 

same from one instance to another. The properties of an object 

class is captured with this representation. Therefore, it is possible 

to generate different shape templates of an object by varying few 

skeletal parameters. 

While it is important that the model is flexible enough to gen- 

erate possible variations of the object shape, it is also important 

that its conservative enough not to generate implausible shapes 

and that the generated shape hypotheses are easily incorporable 

to the image search process. This motivates us to consider a prob- 

abilistic framework using Markov Random Field (MRF) represen- 

tation constructed with the help of our skeleton representation. 

Specifically, a node in the MRF denotes a part which is nothing but 

a skeletal branch comprised of a few sampled skeleton points. The 

edges denote pairwise relations between parts. Associated with 

each node i is a vector valued random variable X i of which values 

determine a possible linearized instance of the shape of a part. Via 

suitably defined unary and binary potentials, φ( X i ) and φ ( X i , X j ), 

it is encouraged that generated shape hypotheses have certain reg- 

ularity, i.e. , their variability correctly reflect the modeled (observed 

or forced) variability and the variations are consistent across parts 

( Fig. 1 ). 

Once an MRF for the shape of a given object class is formed, 

the detection is formulated as MAP estimation problem via a joint 
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Fig. 1. Shape hypotheses generated by varying the two parameters separately. 

distribution over the set of random variables X = { X 1 , . . . , X N n } , i.e. , 

finding the assignment of variables that maximizes joint posterior 

probability. The posterior probability contains a term based on im- 

age evidence; this term is Directional Chamfer Matching (DCM) 

cost between the linear shape hypothesis and the image edge map. 

In our case, the image edge maps are obtained via the Berkeley 

edge detector [16] . Using a DCM based cost on the edge map be- 

comes possible because our shape hypotheses are in the form of a 

collection of lines. The maximization problem is solved using max- 

product belief propagation algorithm. Finding the assignment of 

variables that maximizes joint posterior probability is generally a 

complex problem; however, in the case of tree structured graphs, 

an efficient exact inference algorithm is available. 

Related work 

Most of the recent work in the literature use contour based 

representation of the shape of the object to be detected, e.g., 

[6,8,14,17,20,22,25] . When the shape of an object is modeled as a 

set of contour fragments, one may use chamfer distance function 

to match the set of contour fragments representing the shape of 

the object to the edge fragments detected from the image. The 

chamfer distance function, originally proposed in [4] , is a smooth 

measure of the allignment of two contours. It is considerably ro- 

bust to misalignment in position, scale and rotation. Hence, sev- 

eral shape based object detection methods employ chamfer dis- 

tance for matching locally rigid contour fragments (modeling the 

shape of the object) to noisy edge maps extracted from images, 

e.g., [12,17,20] . 

An important distinction among methods is whether the object 

shape is represented via a single shape contour or via a model ex- 

tracted from a collection of shapes. It is important that possible 

shape variations are taken into account. In the case of multiple 

instances for the shape of an object, a shape space can be con- 

structed or shape parameters can be learned from the collection of 

instances. Even when only a single instance is available, it is impor- 

tant to model the object shape as flexible. This can be achieved by 

allowing some deformations. For example, in [17] , a band around 

the shape is considered for tolerance. 

One technical means of capturing shape variability, is to gen- 

erate shape contours with the help of a skeleton model. Utiliz- 

ing skeleton models brings a significant advantage if the object is 

an articulated one. As compared to contour based models meth- 

ods, however, employing skeletons as shape models are only few. 

To the best of our knowledge, there are three methods. Bai et al. 

[3] consider a skeleton space as a collection of exemplars. Then 

they match boundary fragments corresponding to skeletal pieces 

to image edges using Oriented Chamfer Matching [20] . Adluru and 

Latecki [1] exploit the duality between the contour and skeleton. 

Trinh and Kimia [23] employ matched shock graphs to form a 

shape space. Shape hypotheses are checked in the image edge map 

using contour-partitioned chamfer cost. 

Though there are only a few methods employing skeletons as 

shape models in object detection, the above mentioned alterna- 

tives commonly outperform purely contour based equivalents, es- 

pecially for articulated objects. This is a motivation to further ex- 

plore skeleton based object detection problem. 

Contribution 

Our contribution is to provide a simpler alternative to the most 

relevant competing method of Trinh and Kimia [23] . Even though 

Trinh and Kimia use dynamic programming for solution, their 

method overall is impractical. With their method, processing an 

image takes up to 20 min. There are three reasons for this: (1) 

there are more than 1 million states for each variable; (2) the par- 

titioned Chamfer matching is slow; and (3) because the variability 

of the nodes are independent, implausible shape hypotheses are 

likely to be generated. 

In our opinion, the weakest part of Trinh and Kimia 

[23] method is that its skeleton model is too complicated and the 

parameter sampling process is independent at each skeleton node. 

In comparison to it, our method offers significant computational 

advantages because of the following reasons. We use a simpler 

skeleton model with much less complex parameter search space. 

In our case, it suffices to use a directed chamfer matching which is 

faster. Hence, we can process images in seconds. Furthermore, our 

Markov framework makes it possible to generate more plausible 

shape hypotheses. 

Organization 

The rest of the paper is organized as follows. Our methods 

for model construction and detection are covered respectively in 

Sections 2 and 3 . The dataset and the evaluation criteria are given 

in Section 4 and the experimental results are in Section 5 . Finally, 

in Section 6 , a summary is provided. 

2. Model construction 

In the model construction process, starting from at least one ex- 

ample shape, we arrive at the Markov Random Field representation 

of the object shape. The first step is to extract a reference skeleton 

based on one of the shapes. Then using the skeletons extracted 

from the remaining example shapes, we compute possible varia- 

tions for the skeleton parameters. It is also possible that the range 

of the skeleton parameter variation can be set manually. We ex- 

plain the details of our model construction process in three steps. 

2.1. Reference skeleton 

We extract the skeleton of the reference shape via Bai et al. 

[2] method, using its publicly available code. Because we use Di- 

rected Chamfer Matching later in the search step, the shape model 

needs to be approximated in the form of a collection of a sufficient 

number of line segments. The skeleton can be used for obtaining a 

linear approximation of the shape. First, we use the critical point 

detector of Kovesi [11] providing us with end and junction points, 

and then we trace the path between these critical points to ob- 

tain skeletal branches. Some of extracted critical points are close to 

each other. This creates a redundancy in the representation. Hence, 

we only keep a single end or junction point for those points of 

which pairwise distances are less than a threshold. Similar merg- 

ing strategies are also used in [19] for obtaining stable skeletons 

across samples within a group. Manually, we fix a certain topology 

for each object class. For example, the skeleton structure consists 
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