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Shape clustering is a difficult visual task due to large intra-class variations and small inter-class variations 

induced by shape articulation, rotation, occlusion, etc . To tackle this problem, we attempt to leverage the 

complementary nature among features of different statistics ( e.g. , skeleton-based descriptors and contour- 

based descriptors) for robust clustering. In this paper, a similarity fusion framework based on spectral 

analysis is proposed. The proposed method, which we call co-spectral, is a spectral clustering algorithm. 

It has two inborn merits for shape clustering: (1) it can automatically make use of the complementarity of 

various shape similarities based on a co-training framework; (2) it does not require shape representations 

to be vectors. Co-spectral is evaluated on several popular shape benchmarks. The experimental results 

demonstrate that co-spectral outperforms the state-of-the-art algorithms by a large margin. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Shape clustering [16] is a fundamental problem in pattern 

recognition with applications to shape matching [7,18] , recogni- 

tion [13] , retrieval [5,6] and classification [4] . Given a collection of 

shapes S = { s 1 , s 2 , . . . , s N } where N denotes the number of shapes, 

the aim of shape clustering is to divide all the shape instances into 

K clusters C = { c 1 , c 2 , . . . , c K } according to a pre-defined similarity 

measure. 

The key issues in shape clustering lie in two aspects. First, 

shape data is usually not represented by vectorial features. Instead, 

tree [8] , matrix [13,27] and string [17] are more widely-used in 

shape analysis. Hence, some clustering algorithms that require vec- 

torial representations as inputs, e.g. , K-means [28] , are not applica- 

ble directly. Second, there are large intra-class variations and small 

inter-class variations, like articulation, rotation, occlusion, etc . Nev- 

ertheless, it is difficult to design generic and discriminative shape 

features to handle all the common deformations. In most cases, a 

certain descriptor only focuses on a specific geometric structure 

of shapes. For example, Shape Context (SC) [13] , as a represen- 

tative contour-based descriptor, works well with rigid shapes. In 

contrast, Inner Distance Shape Context (IDSC) [27] , which replaces 

the Euclidean distance used in SC with geodesic distance, is better 

at dealing with articulated shapes. 

To address the above issues, we introduce spectral clustering 

as an elegant mathematical tool for the shape clustering task. 
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Spectral clustering operates on a weighted affinity graph, where 

the nodes in the graph represent the data points and the edge 

weights measure the similarities between two adjacent data 

points. Therefore, it can deal with arbitrary types of input data, 

as long as the pairwise similarities are avaliable. This property 

is crucial for shape clustering, since many shape similarity mea- 

sures have no vectorial representations. Moreover, by exploiting 

the properties of Laplacian of the affinity graph, spectral clustering 

can capture the main patterns across categories and diminish the 

negative influences of noisy attributes. As a result, spectral cluster- 

ing is more robust to shape outliers. 

Considering the limitation of using only one type of similar- 

ity measure, it can be expected that an effective method which 

integrates multiple complementary similarities can boost the per- 

formance of shape clustering remarkably. Nevertheless, it is very 

difficult to fuse multiple descriptors in shape clustering, since no 

prior or extra information can be used to judge the discriminative 

power of different features in such an unsupervised task. To our 

best knowledge now, no methods have properly addressed the fea- 

ture fusion issue in the shape clustering task. 

In this paper, based on spectral clustering, a co-trained spectral 

clustering algorithm is presented. The proposed method inherits 

the nice properties of spectral clustering as introduced above. Sim- 

ilarity fusion is automatically done based on the co-training frame- 

work [41] that exploits the complementary nature among differ- 

ent shape descriptors. Moreover, a density-based seed is exerted to 

co-trained spectral clustering in order to avoid local minima and 

provide stable performances consistently. At last, since co-training 

is not guaranteed to converge as suggested in [23] , we propose a 

simple yet effective consensus-based voting scheme to aggregate 
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the clustering results of different iterations without impairing the 

performance too much. 

The rest of the paper is organized as follows. We give a brief 

review of shape clustering algorithms in Section 2 . Our proposed 

method is introduced in Section 3 . The experimental evaluations 

and comparisons are conducted in Section 4 . Conclusions are 

drawn in Section 5 . 

2. Related work 

In recent years, many algorithms are proposed to address the 

shape clustering task. They can be coarsely divided into two cate- 

gories: contour-based methods and skeleton-based methods. 

In [24] , a new similarity measure between a single shape 

and a shape group is defined, and it serves as the basis for a 

soft K-means like framework to enable robust clustering. Clus- 

tering in [35] is achieved by building on a differential geomet- 

ric representation of shapes and geodesic lengths as shape met- 

rics. Yankov et al. [38] take isomap clustering using a rotation- 

ally invariant metric, which can detect the intrinsic nonlinear em- 

bedding in which the shape examples reside. In [29] , the elastic 

properties of shape boundaries are investigated and clustering is 

done using dynamic programming based on the elastic geodesic 

distance. 

Demirci et al. [19] construct a medial axis graph for shape sil- 

houettes. For every two graphs, a many-to-many correspondence 

between graph nodes [20] is established. These correspondences 

are used later to recover the abstracted medial axis graph. An in- 

formation theoretic framework is presented in [37] . It attempts to 

learn a mixture of tree unions that best accounts for the observed 

samples using a minimum encoding criterion. In [21] , a game the- 

oretic clustering approach is developed, which can simultaneously 

learn categories from examples and the similarity measures related 

to them. Shen et al. also propose a skeleton-based clustering al- 

gorithm in [33] on the common structure skeleton graph (CSSG), 

which can discover intrinsic structural information of shapes be- 

longing to the same cluster. 

Most aforementioned shape clustering methods are either 

contour-based or skeleton-based. There are also some methods 

that are not descriptor-based, such as Laplacian spectrum [30] or 

minimum spanning trees [40] . The method proposed in this paper 

is descriptor-based. It combines complementary shape features in 

a unified framework, thus providing much better performances. 

3. Proposed method 

3.1. Similarity measure 

Contour-based descriptors and skeleton-based descriptors are 

two main streams in shape analysis. Contour-based descriptors de- 

liver the distribution of shape boundary points. They are more sta- 

ble to affine transformations. By contrast, skeleton-based descrip- 

tors convey the structure of object skeletons, thus are more ade- 

quate in non-ridge analysis. The complementary nature between 

them has been extensively testified in shape recognition [9,32] . 

Two similarity measures are implemented in this pa- 

per, i.e. , Shape Context (SC) [13] and Skeleton Path [8] , with 

the former one as a representative contour descriptor and the 

latter one as a skeleton descriptor. 

Shape contetxt. Given a certain shape s q ∈ S, we extract its outer 

contour represented by n discrete points ν = { v 1 , v 2 , . . . , v n } in the 

plane. Around each point v i ∈ ν, we construct a log-polar coordi- 

nate space with 12 bins for dividing angle space and 5 bins for 

dividing radius space. As a consequence, the k -th element in the 

shape context histogram of v i is computed via 

p i (k ) = |{ v | v ∈ bin (k ) , v � = v i , v ∈ ν}| , (1) 

where |.| measures the cardinality of the input set. 

Let q = { q 1 , q 2 , . . . , q n } and p = { p 1 , p 2 , . . . , p n } denote two sets 

of shape context histograms of s q and s p respectively. Their point- 

wise matching cost is measured using χ2 distance as 

C(p i , q j ) = 

1 

2 

∑ 

k 

[ p i (k ) − q j (k )] 2 

p i (k ) + q j (k ) 
. (2) 

After obtaining the matching cost C ( p i , q j ) for all pairs of elements 

p i ∈ p and q j ∈ q , Hungarian algorithm is applied to find the opti- 

mal correspondence as 

H(π ) = arg min 

π

n ∑ 

i 

C 
(
q i , p π(i ) 

)
, (3) 

where π is a permutation indicating that the matching is one-to- 

one. 

Skeleton path. We implement skeleton path proposed in [8] as the 

second similarity measure, which is based on skeleton analysis. In 

this subsection, we give a brief review of skeleton path. One can 

refer to the study in [8] for more details if necessary. 

Assuming that the skeleton curve is one pixel wide, three kinds 

of points are defined: end point, junction point and connection 

point. The end point is defined as the skeleton point owning one 

adjacent point. The skeleton point with more than two adjacent 

points is named a junction point, and the rest are connection 

points. To build the skeleton graph, both end points and junction 

points are chosen as the nodes of the graph. The edges between 

two adjacent nodes are the skeleton branches between them. 

Given a pair of nodes u , v in a skeleton graph, the skeleton path 

P (u, v ) is defined as the shortest path along the skeleton graph be- 

tween u and v . Let P (u q , v q ) and P (u p , v p ) represent two skeleton 

paths from shape s q and s p respectively. Their path distance is de- 

fined as 

pd ( P (u q , v q ) , P (u p , v p ) ) = 

M ∑ 

i =1 

(r qi − r pi ) 
2 

r qi + r pi 

+ α
(l q − l p ) 2 

l q + l p 
, (4) 

where r qi and r pi (0 ≤ i ≤ M ) represent the radii of the maximal 

disks centered at the M sample points of skeleton paths P (u q , v q ) 
and P (u p , v p ) respectively. l q and l p are their lengths, and α is the 

weighting factor. 

Assume that the skeleton graph of s q , denoted as E q = 

{ e q 1 , . . . , e q nq } , has nq end points, and the skeleton graph of s p , 

denoted as E p = { e p 1 , . . . , e p np } , has np end points. The pairwise 

distance between each pair of end points e q i and e p j , referred as 

ed(e q i , e p j ) , is computed via Optimal Subsequence Bijection (OSB) 

as in [8] . Then we can get a nq × np distance matrix �( E q , E p ) : ⎛ 

⎜ ⎝ 

ed(e q 1 , e p 1 ) ed(e q 1 , e p 2 ) . . . ed(e q 1 , e p np 
) 

ed(e q 2 , e p 1 ) ed(e q 2 , e p 2 ) . . . ed(e q 2 , e p np 
) 

. . . . . . . . . . . . 

ed(e q nq 
, e p 1 ) ed(e q nq 

, e p 2 ) . . . ed(e q nq 
, e p np 

) 

⎞ 

⎟ ⎠ 

(5) 

After applying the Hungarian algorithm on �( E q , E p ), we can get 

the optimal correspondence ϕ : { e q 1 , . . . , e q nq } → { e p 1 , . . . , e p np } be- 

tween end points in E q and those in E p . Thus the matching cost, 

also the dissimilarity between two shapes, is obtained. 

3.2. Co-trained spectral clustering 

As a representative of graph-based clustering algorithms, spec- 

tral clustering exploits the properties of Laplacian of the affinity 

graph. Spectral clustering algorithms are usually divided into two 
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