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a b s t r a c t 

The estimation of mutual information between graphs has been an elusive problem until the formulation 

of graph matching in terms of manifold alignment. Then, graphs are mapped to multi-dimensional sets 

of points through structure preserving embeddings. Point-wise alignment algorithms can be exploited in 

this context to re-cast graph matching in terms of point matching. Methods based on bypass entropy es- 

timation must be deployed to render the estimation of mutual information computationally tractable. In 

this paper the novel contribution is to show how manifold alignment can be combined with copula-based 

entropy estimators to efficiently estimate the mutual information between graphs. We compare the em- 

pirical copula with an Archimedean copula (the independent one) in terms of retrieval/recall after graph 

comparison. Our experiments show that mutual information built in both choices improves significantly 

state-of-the art divergences. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

1.1. Motivation 

One of the key elements for building a pattern theory is the 

definition of a set of principled dissimilarity measures between 

the mathematical structures underpinning the theory. For instance, 

in vectorial pattern recognition, one of the fundamental degrees 

of freedom of an information theoretic algorithm (for clustering, 

matching, classification and learning) is the choice of a diver- 

gence. There are some possibilities including mutual information, 

Kullback–Leibler, Bregman divergences, and so on (see [11] for a 

review). 

The mutual information I ( X ; Y ) between two variables X and 

Y is very interesting since it captures high-order statistical de- 

pendencies between the variables. However, when these variables 

are graphs we must address two issues. Firstly, we must express 

graphs X and Y as random variables, beyond the simplistic model 

of Erdös-Rényi model. In such model a random graph is built 

by assigning a probability to the edges. However this model 

does not fully characterize the probability that a given graph 

(with a variable number of vertices) is observed. Secondly, since 

I(X;Y ) = H(X ) + H(Y ) − H(X, Y ) we must estimate the Shannon 
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entropy H (.) of a graph. There are several approaches for estima- 

ting graph entropy. The most efficient entropy estimators rely on 

functionals aiming to quantify the amount of information flow- 

ing through the graph. For instance, in [1] the state vector of the 

steady state random walk on the graph defines a discrete probabil- 

ity function on the nodes. The Shannon entropy of such a probabil- 

ity function yields H (.). On the other hand, quantum walks probing 

is used in [31] for providing mixed quantum states known as den- 

sity matrices. Following Passerini and Severini [26] , the von Neu- 

mann entropy (or quantum entropy) maps discrete (graph) Lapla- 

cians to quantum states: scaling the graph Laplacian by the inverse 

of the volume of the graph we obtain a density matrix whose 

entropy can be computed using the spectrum of the discrete 

Laplacian. More recently Han et al. [14] have approximated the 

von Neumann entropy by formulating it in terms of node degrees. 

The above methods for estimating graph entropy operate on the 

graph itself, i.e., they consider the graph as a coder of node/vertex 

dependencies and describe entropy in terms of its capability for 

diffusing information. However, in this paper we consider that a 

graph is a special type of random variable with a bounded number 

of nodes and/or edges and we model structural distortion in terms 

of a novel coding (transforming graphs into low-dimensional man- 

ifolds). Then, it is possible to exploit the apparatus of bypass en- 

tropy estimators [17,23] . In fact, bypass estimators do not rely on 

estimating probability density functions but on Euclidean distances 

between vectorial patterns. This means that the Parzen approxima- 

tion of the probability density function is no longer needed since 

entropy can be estimated directly from the samples. 
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On the other hand, the development of graph embeddings 

which map vertices to multi-dimensional spaces bypasses the rigid 

discrete representation of graphs . After being embedded, the associ- 

ated multi-dimensional subspace must retain the rich topological 

information of the original representation. Many embeddings have 

been proposed so far: ISOMAP [30] , Heat Kernels [33] , Diffusion 

Maps [16] , Laplacian Eigenmaps [2] , Commute Times [27] , Centered 

Normalized Laplacian [28] among others. Most of the these latter 

structure preserving embeddings (i.e. distances in the embedding 

are correlated with structural properties) establish a formal link 

between topology (usually encoded in spectral terms) and some 

kind of metric or dissimilarity measure in the subspace. Under- 

standing and exploiting the latter formal link is key to quantify- 

ing the effectiveness of the corresponding embedding for a given 

task. For instance, graph comparison. In [9] there are experimen- 

tal graph comparisons showing that the Commute Time (CT) em- 

bedding outperforms the alternatives in terms of retrieval/recall 

for the best dissimilarity measure in a given set. In addition, the 

fact that the latter embedding induces a metric allows us to work 

in the multi-dimensional subspace of the embedding. Here, prob- 

lems such as finding graph prototypes are more tractable. It is 

then possible to return to the original topological space via inverse 

embedding [8] . 

1.2. Contribution 

With these ingredients at hand (bypass estimators and suitable 

embeddings), the mutual information between graphs can be de- 

fined in terms of structural information channels ( Section 2 ). In such 

channel model, there will be embedding-based encoders and in- 

verse embedding decoders. The channel will be characterized by 

a conditional entropy relying on a global non-rigid transforma- 

tion between the input embedding and the distorted one. We will 

devote Section 3 to present how to obtain a multi-dimensional 

estimation of Mutual Information (MI) from the combination of 

copulas and Rényi entropy estimators. In Section 4 we will com- 

pare MI for embedded graphs with other challenging dissimilari- 

ties. In order to perform a fair comparison we will use the Gator- 

Bait database which has been proven to be a very challenging one 

despite its small size. This is due to the fact that it exhibits we 

very high intra-class variability and very low inter-class variability 

in only 100 samples. In Section 5 we will present our conclusions 

and future work. 

Our main contribution in this paper is to define graph similar- 

ity through a model of structural information channel where dis- 

tortion relies on manifold and MI is estimated through different 

types of copula functions. 

2. Information channels and manifold deformation 

Let X = (V X , E X ) be a random variable X : � → E defined over 

the set of unweighted and undirected graphs � with node-sets V X 
having |V X | = n nodes. Then, its associated edge-set E X ⊆ V X × V X 
satisfies |E X | ≤

(
n 
2 

)
and a realization of X is given by an n × n ad- 

jacency matrix A X ∈ E. 

Let K X : V X × V X → R be a topological similarity measure K X ( i , 

j ), ideally a kernel, between two nodes i, j ∈ V X . We assume that 

the probability mass p(X ) relies on the probability mass of K X (., .) 

as follows: peaked similarity distributions yield less probable real- 

izations than flat ones. This choice is convenient for two reasons. 

Firstly, it is consistent with recent definitions of graph entropy (see 

[10,26] and [14] ). Secondly, it provides a principled framework for 

understanding graph distortion in terms of the distortions induced 

in K X (., .). 

Let C be an structural information channel X → C → Y where 

Y = (V Y , E Y ) satisfies V Y = V X . Then, the conditional probability 

p(Y|X ) describes a noiseless channel with respect to the vertices 

or nodes, but a noisy channel with respect to the edges. The chan- 

nel C generates structural noise (insertions and/or deletions of 

edges) through an unknown matching function g : E X → E Y 
⋃ { �} , 

where � is the NULL label accordingly with Myers et al. [20] . Find- 

ing the function g (.) is typically posed in terms of minimizing the 

graph-edit distance between X and Y (see [29] ). Although many 

recent developments have proposed approximations of the graph- 

edit distance (see for instance [12] ) they are (to some extent) 

rooted in marginalizing p(Y|X ) . Marginalization tends to capture 

or preserve local coherence between the matched edges at the cost 

of losing global coherence, especially when the input graphs X and 

Y are unattributed. 

Here, we propose a different approach which enforces global 

coherence. Let f X : V X → R 

d , with d � n = |V X | , a graph embed- 

ding function. The embedding f X (.) induces a manifold M X , i.e. a 

subspace of R 

d , where the structural similarities K X ( i , j ) between 

pairs of vertices i, j ∈ V X are encoded by a geodesic. Graph embed- 

ding functions are such that the Euclidean norm || f X (i ) − f X ( j) || 2 
is a reasonable approximation of the geodesic insofar d matches 

the intrinsic dimension of the manifold (see [9] ). 

Therefore, since a graph X is mapped to a subspace/manifold 

M X ⊆ R 

d we assume that the embedding function f X (.) plays the 

role of an encoder associated with the channel C which transmits 

one manifold M X at a time. Given a manifold to transmit, its en- 

coding is not free of error, i.e. it is noisy: different vertices can be 

mapped to the same point of R 

d . However, we assume that the 

messages (resulting from the encoding) retain the global topology 

of their respective graphs X . A simple model for the the condi- 

tional distribution p(Y|X ) governing C is the usual factorization 

p(Y|X ) = 

n ∏ 

i =1 

p 
(
�(i ) 

Y 
| �(i ) 

X 

)
, (1) 

where �(i ) 
Y 

and �(i ) 
X 

are respectively the i −th points of manifolds 

M Y and M X . However, the above factorization is misleading, since 

we have 

p(�(i ) 
Y 

| �(i ) 
X 

) ∝ exp 

{ 

−1 

2 

∣∣∣∣
∣∣∣∣�(i ) 

X 
− T (�(i ) 

Y 
; W ) 

σ

∣∣∣∣
∣∣∣∣

2 
} 

, (2) 

where T (. ; W ) is a global non-rigid transformation parameterized 

by W , and σ is the bandwidth (see [9] for more details). This is 

consistent with assuming that we cannot observe the matching 

function g (.) but instead its effects in the similarity matrix K X (., .) 

in order to produce a new one K Y (., .) which determines the em- 

bedding f Y : V Y → R 

d leading to M Y . 

The framework developed in this paper encompasses our early 

research. A model for the information channel C does not only as- 

sume that an output manifold M Y is received. It must also specify 

how it is decoded. We do that through an inverse embedding . In 

our previous work (see [8] ) we showed that for certain types of 

embeddings, e.g. commute-time embeddings, it is possible to ap- 

proximate Y with minimal error. 

Consequently, in our model we naturally associate distortion 

(when the information rate exceeds the channel capacity) with 

excessive deformation, since the capacity of the channel, defined 

as C = max p(X ) I(X ;Y) , decays significantly with the increase of 

ε = 

∑ n 
i =1 || �(i ) 

X 
− T (�(i ) 

Y 
; W ) || 2 . This means that, although T (. ; W ) 

is chosen so that ε is minimized, the deformation is constrained 

by a regularization constant, i.e. the channel capacity is bounded 

by regularization. 

Bridging deformation with mutual information I(X ;Y) opens 

up a way of analyzing structural pattern distortion in terms of rate- 

distortion theory. In the following section, we propose a means of 

estimating I(X ;Y) within this framework. 
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