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a b s t r a c t 

This paper shows that when a classifier is evaluated with nonrandom test data, ROC curves differ from 

the ROC curves that would be obtained with a random sample. To address this bias, this paper intro- 

duces a procedure for plotting ROC curves that are inferred from nonrandom test data. I provide simula- 

tions to illustrate the procedure as well as the magnitude of bias that is found in empirical ROC curves 

constructed with nonrandom test data. The paper also includes a demonstration of the procedure on 

(non-simulated) data used to model wine preferences in the wine industry. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In many settings, data are collected in a nonrandom fashion. 

The decision to investigate insurance claims for fraud may be 

based on a predictive model. Investigating insurance claims is 

costly and it may be difficult to allocate resources to inspect a 

random sample of claims. Similarly, the Internal Revenue Service 

(IRS) uses a model that predicts tax-filing errors to select tax 

returns for audits. A recommender system may only show the user 

items that are predicted to be of interest. In these three examples, 

data are only collected for instances that are judged to be more 

likely to be positive cases. 

This paper makes two contributions. This paper’s first contri- 

bution is a characterization of the bias that results in receiver 

operating characteristic (ROC) curves when they are constructed 

with nonrandom test data. 2 The bias described by this paper is 

caused by constructing the ROC curve with test data that are not 

representative of the population of interest. This paper does not 

consider the effects of using test data that are not representative of 

the training data. There is a downward bias for ROC curves when 

the classifier is strongly correlated with the classifier that was 
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2 Throughout this paper, I refer to data that are used to evaluate a classifier’s 

performance as “test data.” Data that are used to train the classifier are referred to 

as “training data.”

used to select the test data. By contrast, ROC curves are pushed 

outward for a classifier with low correlation to the classifier that 

was used to select the test data. The bias that arises from using 

another classifier to select the test data is related to (but different 

from) sample-selection bias for linear regression, which has been 

studied in the econometric literature. 

This paper’s second contribution is a procedure to create ROC 

curves that provide a consistent estimate of the ROC curve that 

would be obtained with random test data. This procedure infers 

the predictive power of the classifier based on available data and 

plots the implied ROC curve. The inferred ROC curves are based on 

econometric work on bivariate probit analysis (e.g. [21] and [19] ). 

A key difference between this paper and prior work on selection 

problems is that the problems considered by this paper are not 

regression equations. Section 5 discusses instances for which ROC 

curves are biased, but the parameters of a regression equation 

would not be. 

I make distributional assumptions that lead to a maximum like- 

lihood problem that is similar to those encountered in estimating 

regression equations with sample selection. A classifier’s expected 

ROC curve is determined by two parameters. The first parameter 

determines how many positive cases there are in the population. 

The second parameter is the correlation of the classifier’s output 

for each instance with that instance’s latent propensity to be a 

positive case. 

The presented procedure is related to the Dorfman–Alf [6] pro- 

cedure for estimating parameters of fitted ROC curves, which also 

uses maximum likelihood estimates under parametric assump- 

tions. (Extensions of the Dorfman–Alf procedure include [17] , [24] , 
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Table 1 

Confusion matrix. 

Truth 

Positive Negative 

Prediction Positive True False 

Positives ( TP ) Positives ( FP ) 

Negative False True 

Negatives ( FN ) Negatives ( TN ) 

Total Positives ( P ) Negatives ( N ) 

and [7] .) The Dorfman–Alf procedure and its various extensions do 

not correct for selection bias. 

This paper contributes to the literature on evaluating classifiers. 

Recent works have shown the connections between ROC curves 

and precision-recall curves [5] and cost curves [13] . Other work on 

the properties of evaluation metrics for classifiers includes Wang 

et al. [22] , who show that normalized discounted cumulative 

gains (NDCG) can consistently distinguish classifiers, and Moffat 

[18] , who provides properties of evaluation metrics. There does 

not appear to be any existing work on evaluating classifiers with 

nonrandom data. 

Training a classifier with nonrandom data is beyond the scope 

of this paper. This paper does not discuss the effects of having 

nonrandom training data. To create classifiers with nonrandom 

training data, the econometric literature has built on the sample- 

selection correction regression of Heckman [11,12] (see [21] for 

a binary classifier). The credit-scoring literature has introduced 

reject inference , which incorporates information from unselected 

items, to improve classifier performance (see, for example, [4] ). 

In the next section, I introduce notation and derive the bias in 

ROC curves when the classifier being evaluated was used to select 

the test data. I derive a ROC curve that consistently estimates the 

ROC curve that would be obtained with random data in Section 3 . 

Sections 4 and 5 present an example and Monte Carlo simulations 

to illustrate this procedure as well as the bias found in empirical 

ROC curves. Section 6 concludes. 

2. Classifiers and ROC curves 

A classifier maps instances to predicted classes. This paper fo- 

cuses on binary classifiers , which map to two classes (e.g., positive 

and negative). While some classifiers map directly to predicted 

classes, this paper focuses on classifiers that produce a continuous 

output. Given the classifier’s output and a threshold, we classify all 

instances above the threshold as positive and all instances below 

the threshold as negative. 

The confusion matrix in Table 1 defines true positives (TP), true 

negatives (TN), positives (P), and negatives (N). Sensitivity and 

specificity are defined as 

Sensitivity = 

T P 

P 
, and (1) 

Specificity = 

T N 

N 

. (2) 

ROC curves, which plot sensitivity as a function of specificity for 

all possible thresholds, 3 illustrate a classifier’s trade-off between 

true positives and false negatives. A higher value of sensitivity 

for a given value of specificity indicates better performance. The 

area under the ROC curve (AUC) is a commonly used metric for 

evaluating a classifier’s performance (as described by Bradley 

[1] ). If the classifier’s output has no connection to the true class, 

the expected AUC would be .5. An excellent introduction to ROC 

curves is provided by Fawcett [8] . 

3 The thresholds are often referred to as “operating points.”

Evaluating a classifier with nonrandom test data 

This section introduces notation and provides some analytical 

results regarding the sample-selection bias for ROC curves. Let us 

denote the continuous output of classifier A for each instance i 

as a i . I assume that there is some unobserved propensity to be a 

positive case and denote this propensity as p i for each instance i . 

The true classification of each instance is 

outcome i = 

{
positive if p i ≥ p ∗

negative otherwise 
, (3) 

where p ∗ is the threshold for an instance to be a positive case. 

A value of p ∗ = 0 indicates that half of the observations are 

positive cases. The class skew increases with the absolute value 

of p ∗. Throughout this paper, I treat both p i and a i as (possibly 

correlated) random variables. The modeler never observes p i , 

only outcome i . For a given threshold c , we can give probabilistic 

definitions of sensitivity and specificity: 

Sensitivity = Prob (a i > c | p i > p ∗) , and (4) 

Specificity = Prob (a i < c | p i < p ∗) . (5) 

The values in Eqs. (1) and (2) provide sample estimates of these 

probabilities. 

Another classifier, B with output denoted as b , is used to select 

the test data. This paper focuses on situations in which b is not 

observed. Appendix B explores the situation of an observed b . I 

assume that each instance of b can be written as 

b i = δ X i + γ a i + ε i , 

where X i is a vector of features for case i and εi is a standard 

normal random variable. The parameter δ is a vector of coefficients 

and γ indicates the degree to which the classifier’s output was 

incorporated into the selection process. I assume that ε is mean 

independent of X and α, i.e. E(ε| X, α) = 0 . This assumption allows 

for estimation of δ and γ by a probit regression. 

Data is selected according to the rule {
Selected if δ X i + γ a i + ε i > s 
Not selected otherwise 

, (6) 

where s is a constant. Sensitivity and specificity conditional on 

selection are denoted as 

Sensitivity | Selection = Prob (a i > c | p i > p ∗, b i > s ) (7) 

Specificity | Selection = Prob (a i < c | p i < p ∗, b i > s ) . (8) 

When data are chosen based on a classifier’s output, the estimates 

in Eqs. (1) and (2) provide an estimate of the values in Eqs. (7) and 

(8) instead of the values in Eqs. (4) and (5) . 

To build our intuition about the effect of nonrandom data, I 

briefly digress to consider a simpler form of choosing test data 

based on a classifier: selecting the test data using the classifier 

that we want to evaluate. Sensitivity and specificity conditional on 

selection on the classifier to be evaluated are denoted as 

Sensitivity | Selection = Prob (a i > c | p i > p ∗, a i > s ) (9) 

Specificity | Selection = Prob (a i < c | p i < p ∗, a i > s ) . (10) 

The following lemma will aid in proving our results regarding 

the bias in empirical ROC curves for test data that are selected by 

the classifier that we want to evaluate. 

Lemma 1. For a fixed value of c, conditioning on selection by the 

classifier that we want to evaluate 
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