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a b s t r a c t

The main goal of research reported in this paper is to propose a new technique for schemata count
of Genetic Algorithms. Till recently, no methods existed for counting the schemata except the manual
one that was obviously cursed by the tedium involved. A substantially generalized expression has been
developed that directly computes the number of unique (different) schemata in a population, using
breakup of similarity bits for non-repeated strings.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The solution strategy of GAs gives prime importance to the
structural representation of the solutions contained in the pop-
ulation using a fixed-length binary string and to the notion of
schemas or schemata (the building blocks) [1–4]. GAs derive their
processing strength from what is known as implicit parallelism.
GAs operate on schemas and the processing leverage is well illus-
trated through Schema Theorem [2]. The idea of schemata gives
us a powerful and compact way of talking about the similarities
among strings. Since schemata provide the basic means of analyz-
ing the net effect of reproduction and other genetic operators on
building blocks contained within the population [1], counting them
can be an enlightening exercise. However, the tedium of count-
ing them can be reduced by the proposed generalized technique
for different populations for non-repeated strings via a single line
computation.

In trying to develop this new technique, we build on a funda-
mental premise made in [6] and then further proceed to uncover
the correlation between the schemata and the breakup of ‘simi-
larity bits’ of n-strings in the population. A complete illustration
shows that the unique schemata count is independent of total sim-
ilarity or total diversity bits count in a population. However, this
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count is seen to depend upon the breakup of similarity bits count.
A cue was, therefore, taken that a definitive relation may be devel-
oped to relate the breakup of similarity bits count with the number
of unique schemata in a population. In our previous contribution
[8], we developed a relation for directly computing the unique
schemata count of a population for non-repeated strings depending
upon the breakup of similarity bits count. However, the developed
relation was restricted to a specific case of maximum similarity bits
count, i.e., s(b) being equal to m − 1 and further that the count of
such s(b)’s is equal to n − 1 (where m = length of string and n = no.
of strings) [8].

The above contribution is further extended in this paper to a
more general case for obtaining the unique schemata count for
non-repeated strings of different populations wherein the restric-
tion imposed above was removed. This paper, therefore, advances
the state of the art by developing a more generalized expression for
directly computing the unique schemata count of different popu-
lations for non-repeated strings via a single computation.

The rest of the paper is organized in four sections: Section 2
provides the Rationale for computing schemata count for GAs. Sec-
tion 3 provides theoretical background. It introduces the basics of
schema theory. Relevant definitions from literature are put forth
along with two new definitions framed by us in [8]. Although the
aim of Section 4 is to present the development of a generalized
case (removing restrictions in [8]), yet as a prelude and to aid the
understanding, also presented are illustrations for a new technique
for schemata count for the restricted case [8]. Conclusions and some
future directions are put forth in Section 5.
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Nomenclature

Notations
n number of strings
m length of the string
s(b) similarity bits count and s(t) − total similarity bits

count
d(b) diversity bits count and d(t) − total diversity bits

count

2. Rationale for computing schemata count for GAs

Each individual in the population is an instance of 2m schemata.
In a population of n-strings, the number of unique schemata lies
between 2m and n·2m. Therefore, it can be said that while the GA
explicitly evaluates n-strings during any generation, it is implicitly
evaluating a much larger number of schemata. This effect is known
as intrinsic/implicit parallelism in GAs [1].

The usage of Schemata Count will help in a quantitative assess-
ment of the convergence of GAs and will serve as a novel tool in the
place of other convergence criteria. It is being envisioned Schemata
Count shall make a significant dent into the research of operations
which might result in newer applications.

3. Theoretical aspects of schemata

This section explains the notion of schemas and related con-
cepts.

3.1. Basics of schema theory

Holland [5] invented the idea of schema (schemas or schemata
for plural) to formally conceptualize the notion of ‘building blocks’.
The theoretical foundations of classical GAs rely on using a fixed-
length binary string representation of solutions, and on the notion
of a schemas.

A schema is a string over an extended alphabet {0, 1, *} where
the ‘0’ and the ‘1’ retain their normal meanings and the ‘*’ is a wild
card or don’t care symbol. A schemata is a set of genes that are
made up of a partial solution. A schemata with ‘m’ defined elements
and ‘n − m’ ‘don’t care’ positions (such as an m-cell sub-placement
in an n-cell placement problem) can be considered as an (n − m)-
dimensional hyperplane in the solution space [7]. All points on that
hyperplane (i.e., all configurations that contain the given subplace-
ment) are instances of the schema.

Example: The schema (0 1 0 * 1 1) matches the two strings
(0 1 0 0 1 1) and (0 1 0 1 1 1).

If the don’t care symbol appears in two places, there will be
four strings that match it, and in general if there are ‘n’ don’t care
symbols in a schema, then it matches exactly 2n strings. On the
other hand, a string can be represented by any of the 2m schemas,
where m is the length of the string.

Example: The string (0 1 0 1) is matched by any of the follow-
ing 24 (=16) schemata: (0 1 0 1); (0 1 0 *); (0 1 * 1); (0 * 0 1); (* 1 0 1);
(0 1 * *); . . . (* * * *).

3.2. Definitions

A few definitions already available in literature and required in
the context of this paper are put forth here as under:

Definition 1 (Defined bits). The defined bits are the number of bits
other than the don’t care ‘*s’ within the schema and their positions
in the string are called the defining positions.

Example: There are 3 defined bits in the schema (0 1 * 1).

Definition 2 (Non-defined bits). The non-defined bits are the num-
ber of bits having don’t care ‘*s’ within the schema and their
positions in the string are called the non-defining positions.

Example: There is only 1 non-defined bit in the schema (0 1 * 1).

Definition 3 (Schema Order). The order of a schema is simply the
number of fixed positions present in the template [4]. All schemata
do not have equal importance in directing the search of the GA.
Some schemata are more specific than others. A schema that is
more specific provides more information about the design space
than the schema that is less specific.

Example: The schema (1 * 0 1 * 1 * 1 * *) is much more specific
than the schema (1 * * * * * * * * *).

Definition 4 (Defining Length). The length of a schema is the dis-
tance between the first and the last specific string positions [4].
Certain schemas span more of the total string length than others.

Example: The schema (1 * * * * * * 0 * *) spans a larger portion of
the string than the schema (1 * 0 * * * * * * *). In spite of the fact
that both the schemata are of the same order, i.e., 2, the first
schema (with defining length 7) gives information about different
regions of the design space while the second one (with defin-
ing length 2) gives more information about a specific region of
the design space but the information is restricted to that specific
region and there is no information about other areas of the design
space.

We now put forth two more definitions framed by us in [8] and
needed in the context of the current work also:

Definition 5 (Similarity bits count and total similarity bits count).
The number of matching alleles between any two strings is called
the similarity bits count. The total of all such counts in a population
of ‘n’-strings constitutes the total similarity bits count.

Example: Consider a population of strings S1: (0 1 0), S2: (0 1 1)
and S3: (0 0 1), the similarity bits count between strings S1 and S2,
s(b) = 2 and that between S2 and S3, s(b) = 2 and that between S1
and S3, s(b) = 1 and the total similarity bits count, s(t) = 2 + 2 + 1 = 5.

Definition 6 (Diversity bits count and Total diversity bits count). The
number of non-matching alleles between any two strings is called
the diversity bits count. The total of all the diversity bits in a pop-
ulation of ‘n’-strings constitutes the total diversity bits count.

Example: Considering the above example, the diversity bits
count between strings S1 and S2, d(b) = 1 and that between strings
S2 and S3, d(b) = 1 and that between strings S1 and S3, d(b) = 2, and
the total diversity bits count, d(t) = 1 + 1 + 2 = 4.

4. Towards generalized expression

From the previous related research [6] that formed the starting
point for our current research, the number of schemata is corre-
lated to the total number of similarity or diversity bits. However, a
difficulty arises when the total similarity bits count for two differ-
ent populations is same but the breakup of similarity bits count is
different.

The basis for evolving the Schemata Count has been through
gaining empirical insights into the correlations between Schemata
Count and number of strings, length of the string and variants
of similarity bits count. We showed in [8] that unique schemata
count is correlated with the breakup of similarity bits count. To
that end, we took two illustrations that are reproduced here to aid
the understanding of the further issues being probed in this paper.
In the third illustration, we further extend the restricted case (of
second illustration) to a more generalized one for obtaining the
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