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a b s t r a c t

This paper develops a Bayesian dictionary learning method for hyperspectral image super resolution in the
presence of mixed Poisson–Gaussian noise. A likelihood function is first designed to deal with the mixed Poisson–
Gaussian noise. A fusion optimization model is then introduced, including the data-fidelity term capturing the
statistics of mixed Poisson–Gaussian noise, and a beta process analysis-based sparse representation regularization
term. In order to implement the proposed method, we use alternating direction method of multipliers (ADMM) for
simultaneous Bayesian nonparametric dictionary learning and image estimation. Compared with conventional
dictionary learning methods, the introduced dictionary learning method is based on a popular beta process factor
analysis (BPFA) for an adaptive learning performance. Simulation results illustrate that the proposed method
has a better performance than several well-known methods in terms of quality indices and reconstruction visual
effects.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Hyperspectral (HS) image has various applications, such as resource
management, remote sensing and monitoring, and so on [1]. Because
of various limitations from spectral imaging techniques, the received
HS image is generally low spacial resolution and corrupted by various
noise [2]. Therefore, it is very important to develop software techniques
to enhance the resolution of the acquired HS image.

Although single image super resolution methods have been well
developed [3–6], multiband image super resolution study is relatively
less and has become a significant topic, recently. Some methods for HS
image super resolution have been proposed in the recent years. The first
category method, which is based on Bayesian inference is to find the
maximization posteriori estimator by combining the likelihood function
and the defined appropriate image prior [7–10]. In addition, the method
based on spectral unmixing or matrix factorization has been explored to
fuse HS and multispectral (MS) images. Yokoya et al. [11] first proposed
a coupled nonnegative matrix factorization (CNMF) approach to fuse HS
and MS images by factorizing the image into endmember and abundance
with line spectral unmixing technique. Several improved approaches
by considering nonnegative and sparse constraints on the endmember
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and abundance matrices were also proposed [12–16]. Simoes et al. [17]
proposed a total variation regularization for endmember. Wei et al. [18]
first converted the original image to the lower dimensional image
subspace, then proposed a method based on sparse representation for HS
image super resolution. Without the auxiliary MS image, Zhao et al. [19]
proposed a joint regulation of spatial and spectral nonlocal similarities
method for HS image super resolution. However, all these methods are
based on the specific prior knowledge of the image noise and can only
remove Gaussian noise.

In practice, real HS images usually are corrupted by several different
types of noise. Except Gaussian noise, Poisson noise is another important
noise source in HS image due to the quantum nature of light in the
imaging device [20,21]. In recent years, various methods for Poissonian
image restoration were proposed in [22–29]. Especially, in HS image
processing, Othman et al. [20] proposed derivative-domain wavelet
shrinkage method for noise reducing of HS image. Mansouri et al. [21]
presented an adaptive method with semi-norm total variation regular-
ization term on spatial and spectral domain to remove Poisson noise
of hyperspectral image. Yang et al. [23] proposed a Poisson–Gaussian
mixed model for HS image denoising by principal component analysis.
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Ye et al. [24] presented a based on sparse representation method for
denoising HSI corrupted by mixed noise. Qian et al. [25] proposed a
nonlocal spectral-spatial structured sparse representation for Poisson–
Gaussian mixed noise reducing of HS imagery. Bajic et al. [26] presented
a single image super resolution method in the case of mixed Poisson–
Gaussian noise. However, these introduced methods above cannot be
directly used for HS image super resolution in the case of the mixture
of Poisson and Gaussian noise. So it is necessary to develop a super
resolution method for HS image corrupted by Poisson–Gaussian noise,
which is more consisting with real obtained HS image.

In this paper, we propose a Bayesian nonparametric dictionary learn-
ing method for HS image super resolution. We first derive a likelihood
function to deal with the mixed Poisson–Gaussian noise. To overcome
ill-posedness of the problem, we introduce a sparse representation
regularization term. The key problem of sparse representation is how
to learning the dictionary. Typical dictionary learning approach such
as K-SVD requires some predefined parameters such as dictionary size
and the sparsity level 𝑇 to determine how many dictionary elements are
used [30]. If these parameters are set unaccurately, the reconstruction
result will be degraded greatly. In this paper, Bayesian nonparametric
dictionary learning is introduced, which is based on a popular beta
process factor analysis (BPFA) [31], which has shown good performance
in many application areas [32–36]. The work of Akhtar [35] followed
the spectral unmixing method to infer the endmember as the learned
dictionary and abundance matrix separately. In [35], the observed
HS image is used as the dictionary training data. However, when the
observed image is corrupted by the heavy noise, especially, in the case
of the mixed Poisson–Gaussian noise, the error of estimated dictionary
is big. In contrast, we learn the dictionary in the reduced low dimension
subspace by SVD factorization of the observed HS image. This dimen-
sionality reduction has two advantages. One is that it is computationally
more efficient to work in a lower dimensional space than in the original
space. The other advantage is that, since the number of variables to
be estimated is significantly reduced as well as the noise by SVD, the
estimated dictionary is normally more accurate. Furthermore, in our
model, we combine the dictionary learning and image estimating into
a unifying optimization formulation, and update the dictionary self-
adaptively by variational Bayesian method according to the estimated
image on current iteration, so that the estimated error is reduced. At
last, in the paper, we consider the case of mixed Poisson–Gaussian noise
which extent the traditional Gaussian noise case and propose a cost
function, which contains two data-fidelity terms capturing the statistics
of the mixed Poisson–Gaussian noise. Simulation results illustrate that
the proposed method has a better performance than several well-known
methods both in terms of visual effectiveness and quality indices, and
costs less time than Akhtar method [35].

The remainder of this work is organized as follows. Section 2 gives
the problem model and estimation method. Section 3 describes Bayesian
dictionary learning and optimization algorithm. Experimental results
are presented in Section 4. Section 5 gives the conclusion.

2. Problem model and estimation method

2.1. Observation model of HS and MS images

We consider the following degraded observed model of HS and MS
images:

𝑌ℎ = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑌𝑀) + 𝑉ℎ, 𝑌𝑚 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑅𝑌 ) + 𝑉𝑚, (1)

where 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 denotes the Poisson distribute, 𝑌 ∈ R𝑁ℎ×𝑛𝑚 denotes the
unknown high resolution HS image to estimate, 𝑁ℎ is the number of
spectral bands, 𝑛𝑚 is the number of pixels of very band, 𝑌ℎ ∈ R𝑁ℎ×𝑛ℎ
denotes the observed low resolution HS image, 𝑛ℎ is pixels of every
band, 𝑌𝑚 ∈ R𝑁𝑚×𝑛𝑚 denotes the observed MS image composed of 𝑁𝑚
bands, 𝑀 ∈ R𝑛𝑚×𝑛ℎ denotes the known degrade matrix including spatial
blurring filter and down sampling matrix, 𝑅 ∈ R𝑁𝑚×𝑁ℎ is the known
spectral response, and 𝑉ℎ and 𝑉𝑛 denote observed Gaussian noise. Our
goal is to estimate 𝑌 from the observed images 𝑌ℎ and 𝑌𝑚.

2.2. Proposed estimation method

In the subsection, we propose a new estimation method by introduc-
ing two data-fidelity terms capturing the statistics of mixed Poisson–
Gaussian noise and BPFA-based sparse representation regularization
term.

(1) Poisson–Gaussian data-fidelity
Let 𝑌 ℎ, 𝑌 𝑚 denote 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑌𝑀), 𝑃 𝑜𝑖𝑠𝑠𝑜𝑛(𝑅𝑌 ), respectively, then

𝑌ℎ = 𝑌 ℎ + 𝑉ℎ, 𝑌𝑚 = 𝑌 𝑚 + 𝑉𝑚, (2)

where random vectors 𝑌 ℎ, 𝑌 𝑚 have Poisson distribution, and 𝑉ℎ, 𝑉𝑚 have
Gaussian distribution. For discussion convenience, let 𝑌ℎ(𝑖𝑗) and 𝑌𝑚(𝑖𝑗) be
pixel of the observed HS and MS images at the location 𝑖𝑗, respectively.
We have the following moment generating functions:

(1) For the Poisson case, 𝑌 ℎ(𝑖𝑗) = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛((𝑌𝑀)(𝑖𝑗)), with parameter
(𝑌𝑀)(𝑖𝑗) > 0, the moment generating function of 𝑌 ℎ(𝑖𝑗), 𝑌 𝑚(𝑖𝑗) is,
respectively

𝑛𝜙𝑌 ℎ (𝑖𝑗) (𝑡) = exp{(𝑌𝑀)(𝑖𝑗)(𝑒𝑡 − 1)},

𝜙𝑌 𝑚 (𝑖𝑗)
(𝑡) = exp{(𝑅𝑌 )(𝑖𝑗)(𝑒𝑡 − 1)}. (3)

(2) For the Gaussian case, 𝑉ℎ(𝑖𝑗) ∼  (0, 𝜎𝑉ℎ (𝑖𝑗)), 𝑉𝑚(𝑖𝑗) ∼  (0, 𝜎𝑉𝑚 (𝑖𝑗)),
the moment generating function of 𝑉ℎ(𝑖𝑗), 𝑉𝑚(𝑖𝑗) is respectively

𝜙𝑉ℎ (𝑖𝑗) (𝑡) = exp{
𝜎𝑉ℎ (𝑖𝑗)𝑡

2

2
},

𝜙𝑉𝑚 (𝑖𝑗)
(𝑡) = exp{

𝜎𝑉𝑚 (𝑖𝑗)𝑡
2

2
}. (4)

(3) For the mixture case, 𝑌ℎ(𝑖𝑗) = 𝑌 ℎ(𝑖𝑗) +𝑉ℎ(𝑖𝑗), 𝑌𝑚(𝑖𝑗) = 𝑌 𝑚(𝑖𝑗) +𝑉𝑚(𝑖𝑗),
the moment generating function of 𝑌ℎ(𝑖𝑗), 𝑌𝑚(𝑖𝑗) can be calculated by

𝜙𝑌ℎ (𝑖𝑗) (𝑡) = E[𝑒𝑡
(

𝑌 ℎ (𝑖𝑗)+𝑉ℎ (𝑖𝑗)
)

]

= exp{(𝑌𝑀)(𝑖𝑗)(𝑒𝑡 − 1) +
𝜎𝑉ℎ (𝑖𝑗)𝑡

2

2
},

𝜙𝑌𝑚 (𝑖𝑗)
(𝑡) = 𝐸[𝑒𝑡

(

𝑌 𝑚 (𝑖𝑗)+𝑉𝑚 (𝑖𝑗)

)

]

= exp{(𝑅𝑌 )(𝑖𝑗)(𝑒𝑡 − 1) +
𝜎𝑉𝑚 (𝑖𝑗)𝑡

2

2
}, (5)

where E[⋅] denotes mathematical expectation.
From the properties of the generating function, we know

E[𝑌ℎ(𝑖𝑗)] = 𝜙′
𝑌ℎ (𝑖𝑗)

(0) = 𝑌 ℎ(𝑖𝑗) = (𝑌𝑀)(𝑖𝑗),

E[𝑌ℎ2(𝑖𝑗)] = 𝜙′′
𝑌ℎ (𝑖𝑗)

(0) = (𝑌𝑀)2(𝑖𝑗) + (𝑌𝑀)(𝑖𝑗) + 𝜎𝑉ℎ (𝑖𝑗), (6)

and

E[𝑌𝑚(𝑖𝑗)] = 𝜙′
𝑌𝑚 (𝑖𝑗)

(0) = 𝑌 𝑚(𝑖𝑗) = (𝑅𝑌 )(𝑖𝑗),

E[𝑌𝑚2
(𝑖𝑗)] = 𝜙′′

𝑌ℎ (𝑖𝑗)
(0) = (𝑅𝑌 )2(𝑖𝑗) + (𝑅𝑌 )(𝑖𝑗) + 𝜎𝑉𝑚 (𝑖𝑗), (7)

where the superscript notation ′ reflects the derivative operator. The
variance of 𝑌ℎ(𝑖𝑗), 𝑌𝑚(𝑖𝑗) can be calculated as

𝑉 𝑎𝑟[𝑌ℎ(𝑖𝑗)] = (𝑌𝑀)(𝑖𝑗) + 𝜎𝑉ℎ (𝑖𝑗),

𝑉 𝑎𝑟[𝑌𝑚(𝑖𝑗)] = (𝑅𝑌 )(𝑖𝑗) + 𝜎𝑉𝑚 (𝑖𝑗). (8)

Furthermore, we assume that 𝑌ℎ(𝑖𝑗), 𝑌𝑚(𝑖𝑗) have Gaussian distribution.
That is,

𝑌ℎ(𝑖𝑗) ∼ 
(

(𝑌𝑀)(𝑖𝑗), (𝑌𝑀)(𝑖𝑗) + 𝜎𝑉ℎ (𝑖𝑗)
)

,

𝑌𝑚(𝑖𝑗) ∼ 
(

(𝑅𝑌 )(𝑖𝑗), (𝑅𝑌 )(𝑖𝑗) + 𝜎𝑉𝑚 (𝑖𝑗)
)

. (9)

Based on the maximization likelihood (ML) estimation approach, a
likelihood object function for high resolution HS image estimation is
expressed as

max
𝑌
𝑝(𝑌ℎ|𝑌𝑀) ⋅ 𝑝(𝑌𝑚|𝑅𝑌 ), (10)
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