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A B S T R A C T

In this paper, we specifically design an efficient compressive sensing video (CSV) coding framework for the CSV
system, by considering the distribution characteristics of the CSV frame. To explore the spatial redundancy of the
CSV, the CSV frame is first divided into blocks and each block is modeled by a Gaussian mixture model (GMM),
and then it is compressed by a product vector quantization. We further explore the temporal redundancy of the
CSV by encoding the adjacent CSV frames by the differential pulse code modulation technique and the arithmetic
encoding technique. Experiment results show that the proposed CSV coding solution maintains low coding
complexity, which is required by the CSV system. Meanwhile, it achieves significant BD-PSNR improvement by
about 7.13–11.41 dB (or equivalently 51.23–66.96% bitrate savings) compared with four existing video coding
solutions, which also have low computational complexity and suit for the CSV system.

1. Introduction

Digital video acquisition and compression is an important research
topic and has been well studied in the past decades. A classical video
system often comprises two steps: capturing each frame of the video
scene at certain temporal/spatial resolution by a video camera in
acquisition process, and then massively dumpling the temporal/spatial
redundancy information of the captured frames in a compression
process. According to the Shannon-Nyquist sampling theorem [1], the
temporal/spatial sampling rate of the video acquisition needs to be at
least twice as high as the highest temporal/spatial frequency of the
video scene so that it can be reconstructed accurately. The cost and
computational complexity of the video system rises dramatically with
the increase of the temporal/spatial resolution of the video camera.
Thus it may not be suitable to the requirements of many modern
applications with computational resource and energy limitations, e.g.,
wireless video sensor networks [2,3], wireless image/video broad-
casting [4,5], aerial photography [6,7] and high-speed photography
[8–10]. Recently, compressive sensing (CS) has emerged as an effective
sampling theory for the acquisition of signals which can be sparsely
represented [11,12]. Based on CS theory, a new architecture called
compressive sensing video (CSV) system has been proposed for low
complexity video acquisition, which enables acquiring and compressing
video scene simultaneously [13–19]. Different from classical video
system, the CSV system [16–19] is able to acquire the high-frame-rate

video with a low-frame-rate camera, and its video acquisition has a
lower computational complexity.

References [16–18] are typical CSV cameras for the CSV acquisition,
which enables temporal compression while video acquisition. A CSV
system mainly contains three steps: CSV acquisition, CSV coding
(encoding/decoding) and CSV reconstruction, as shown in Fig. 1.

1.1. CSV acquisition process

In the CSV system with temporal compression ratio T, each of the T
input video frames is first modulated through a coded aperture with
random mask, and then the CSV camera sums the T modulated frames
and produces one CSV frame as shown in Fig. 1. Let nx and ny represent
the spatial resolution of the input video frame in the horizontal and
vertical direction, respectively. Let the video cube RX ∈ n n T× ×x y denote
the original T input video frames and xi j k, , denote (i,j)-th pixel in the k-
th input video frame. Let RH ∈ n n T× ×x y denote the T random mask cube
for modulating the input video frames, while h ∈ {0, 1}i j k, , is (i,j)-th
component in the k-th random mask. Then the CSV frame RY ∈ n n×x y is
acquired as follows.

∑y x h e i n j n= + , ∀ = 1,…, ; = 1,…, ;i j
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where yi j, is (i,j)-th pixel in the acquired CSV frame Y. hi j k, , is assumed to
be fixed in space during each time period of the input video frame. ei j, is
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the noise while measuring the CSV frame. Thus each pixel value yi j, is a
weighted sum of the pixels at the same spatial position in X.

In order to reduce the computational complexity of the CSV system,
we apply the block based CSV acquisition and reconstruction [24]. We
divide the video cube X into L non-overlap patches of the size
s s T× × , and the random mask cube H are also divided into the same
size. Therefore the acquired CSV frame Y is divided into a set of L non-
overlap blocks of the size s s× . Let Rx ∈i

s T2 and Ry ∈i
s2 represent the

vectorized i-th patch of the video cube X and i-th block of CSV frame Y,
respectively. The block based CSV acquisition process for each block yi
can be expressed as

ε i Ly h x= + , ∀ = 1,…,i i i i (1)

where h ∈ {0, 1}i
s s T×2 2 denotes the matrix formed by i-th patch of the

random mask cube H. The vectorized noise for measuring the i-th patch
xi is denoted by Rε ∈i

s2, and in this work we assume that ε Ν ε R~ ( |0, )i i ,
where RR ∈ s s×2 2 is the covariance matrix of the noise.

We assume that xi is drawn from a GMM with K Gaussian
components as in [24].

∑p w Νx x m S( ) = ( | , )i k

K
k i k k=1

where Rm ∈k
s T2 , RS ∈k

s T s T×2 2 and wk, (w > 0k and w∑ = 1k
K

k=1 ) denote
the mean, the covariance matrix, and the weight of the k-th Gaussian
component in the GMM, respectively.

We then model the probability density function (PDF) of yi in (1) by
a GMM with K Gaussian components (p-dimensional Gaussian distribu-
tion p s= 2) [24,28].

∑p w Ν μ Σy y( ) = ( | , )i k

K
k i k k=1 (2)

where Rμ h m= ∈k i k
p, RΣ h S h R= + ∈k i k i

T p p× and wk , (w > 0k and
w∑ = 1k

K
k=1 ) denote the mean, the covariance matrix, and the weight of

the k-th Gaussian component in the GMM, respectively. R is the
precision matrix which is the noise covariance of εi. One can estimate

the GMM parameters in (2) by EM algorithm [25] based on a training
set of blocks from the CSV frames. The number of Gaussian components
K is a design parameter in the GMM parameters estimation. The main
advantage of using GMM for modeling the CSV patch yi is that it
benefits a low computational lossy compression algorithm design based
on GMM.

1.2. CSV coding process

Since the CSV camera is always implemented on analog device and
the acquired CSV frames are real value, a CSV coding process is
required for compressing the CSV frames for further storage or
transmission. In CSV coding, the acquired CSV frames are compressed
and encoded into a set of binary codes, and these binary codes can be
conveniently stored or transmitted to the receiver for CSV reconstruc-
tion. At present, due to the low computational complexity requirement
of the video acquisition and compression processes in the CSV system,
existing coding solutions which suit for the CSV system are: 1) JPEG
[20] based solution MJPEG-differential pulse code modulation
(MJPEG-DPCM) [21], 2) uniform scalar quantization (USQ) based
solution USQ-DPCM [22], 3) H.264/AVC Intra codec [23], and 4)
HEVC Intra codec [41]. There are also some other efficient coding
solutions like the H.264/AVC inter codec [23] and HEVC Lowdelay
codec [41]. They may not be suit for the CSV coding application in CSV
system due to the high computational complexity. However, many fast
algorithms have been proposed for video coding [44–46]. However,
these methods still rely on motion estimation (ME), which is not
suitable for resource limited CSV system. Thus, these ME-based video
coding methods are not taken into consideration in this paper. Although
the above mentioned four coding solutions have a low computational
complexity, they do not explore the distribution characteristics of the
CSV frames, thus the compression efficiency will be degraded. The
distribution of the discrete cosine transform (DCT) coefficients of the
CSV frame is very different from that of natural video frame, as shown

Fig. 1. The architecture of a typical CSV system which enables temporal compression while acquisition.
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