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a b s t r a c t

This paper presents a novel variational framework for low-light image enhancement. The proposed enhancement
algorithm simultaneously performs brightness enhancement and noise reduction using a variational optimization.
An edge-preserved noise reduction is performed by minimizing the total variation constraint term in the energy
function. In addition, the proposed method estimates the optimal transmission map to restore the low-light image
by minimizing the 𝓁2-norm smoothness and data-fidelity terms. To minimize the proposed energy functional, the
proposed method splits the 𝓁1-derivative term under the split Bregman iteration framework. The performance of
the proposed method is evaluated using both simulated and natural low-light images. Experimental results show
that the proposed enhancement method can significantly improve the quality of the low-light images without
noise amplification.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The low-light image restoration methods play an important role
in various image processing application fields to detect and recognize
objects as a pre-processing step [1]. However, in a low-light condition an
acquired image is degraded by a narrow dynamic range due to the low-
sensitivity of an imaging sensor. In addition, the automatic gain control
(AGC) function in the image signal processing (ISP) chain amplifies
the noise, and it results in a low signal-to-noise (SNR) ratio. For this
reasons, it is very difficult to restore a high-quality image with a high
SNR because of the low-light noise amplification. To solve this problem,
the combined low-light image enhancement and noise removal method
is required to prevent the noise amplification, color distortion, and
brightness saturation in the restored images.

Many low-light image restoration methods have been proposed in
the literature over the past few years. These methods can be categorized
into three groups: (i) histogram-based, (ii) Retinex-based, and (iii)
transmission map-based methods. Histogram-based methods use the
cumulative distribution function (CDF) of an input histogram as an
intensity transform function to enhance the global or local contrast.
These methods modify the CDF to redistribute a concentrated histogram
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of the input image to a specified region [2–8]. However, these methods
often produce an over-enhanced result in the bright region and it results
in both noise amplification and color distortion.

The original Retinex theory was first introduced by Land et al. to
explain the color perception property of the human visual system, which
is more influenced by the surrounding surfaces than the color of the
target surface [9,10]. In addition, they proposed the ratio-threshold-
reset Retinex method to estimate the ‘lightness’ of an image in the
different wavelengths by computing the paths between the target and
neighboring pixels [11]. Recently, Provenzi et al. proposed the random
spray Retinex (RSR) algorithm, which analyzes the paths to the target
pixel using the neighbor pixels in the specified spray region. Banić et al.
proposed an improved version of the RSR algorithm to reduce the
amplified noise in the enhancement process [12].

Horn’s Retinex method estimated the reflectance component using
the Laplacian operator to the logarithmically transformed input im-
age [11]. In the variational framework, the differential operator is used
to estimate the smoothness prior on the illumination and reflectance
components, respectively. Kimmel et al. presented a variational Retinex
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Fig. 1. Results of low-light image enhancement. Top Left: real low-light image. Top Right:
Ma’s method [14]. Bottom Left: Jiang’s method [19]. Bottom Right: the proposed method.

method using 𝓁2-minimization to estimate the illumination and re-
flectance components [13]. Ma et al. estimated the illumination compo-
nent using 𝓁1-minimization [14]. Although the 𝓁1-based Retinex method
can produce an edge-preserved restoration result without halo effects,
it cannot avoid the over-enhancement in the gamma correction step.

Jobson et al. estimated the illumination component using a Gaussian
low-pass filter and the logarithmic transformation, and enhanced only
the reflectance component by separating the estimated illumination
component [15]. However, the single-scale Retinex (SSR) method gen-
erates halo effects near edges according to the variance of Gaussian
low-pass filter. To solve this problem, the multi-scale Retinex method
produced a better restored result using the weighted sum of multiple
SSR results. To further reduce the color distortion, multi-scale Retinex
color restoration (MSRCR) method was proposed using the color con-
stancy [16,17]. However, the Retinex-based methods can neither esti-
mate the accurate illumination component because of the insufficient
amount of the incoming light nor overcome the undesired artifacts such
as noise amplification and color distortion.

Recently, transmission map-based restoration methods have been
proposed [18,19]. These methods use a priori statistical property of
natural images, which is called the dark channel prior (DCP). The DCP
assumption says that at least one of R, G, and B pixel values is close to
zero in a non-hazy region. Jiang et al. was estimated the DCP from the
pixel-wise inversion of low-light image, which looks similar to a hazy
image and restored the low-light image using the transmission map. The
transmission map-based methods produce better restored result, but it
cannot completely avoid the noise amplification and color distortion.

Most existing low-light image restoration methods cannot reduce
the noise amplification in the restoration process as shown in Fig. 1.
Furthermore, additional post processing steps including noise removal
and color correction cannot produce the optimally restored results. To
solve this problem, this paper presents a variational low-light image
restoration algorithm to perform both brightness enhancement and
noise reduction, simultaneously. The proposed method estimates the
optimized transmission map using the pixel-wise inversion of a low-
light image by minimizing the 𝓁2-norm of smoothness constraint. In
addition, in order to effectively reduce the noise amplification, the
proposed method performs 𝓁1-norm minimization using the split Breg-
man iteration method [20]. Therefore, the proposed method produces
significantly improved result without undesired artifacts.

The paper is organized as follows. Section 2 briefly describes the
theoretical background of haze removal and total variation. Section 3
presents the proposed low-light image restoration algorithm using the
variational optimization. Experimental results are shown in Section 4,
and Section 5 concludes the paper.

2. Theoretical background

This section presents a brief review of the dark channel prior-based
haze removal and total variation (TV)-based denoising methods for a
theoretical background of the proposed low-light image enhancement
algorithm.

2.1. Dark channel prior-based haze removal

A hazy image commonly consists of the scene radiance component
that is reflected from the objects and the airlight component scattered
by the atmosphere [21]. The degradation model of the hazy image is
defined as

𝑔𝑐𝐻 = 𝑓 𝑐𝑒−𝑘𝐝 + 𝛼
(

1 − 𝑒−𝑘𝐝
)

, (2.1)

where 𝑔𝑐𝐻 , and 𝑓 𝑐 represent the observed hazy image and scene radi-
ance, respectively, 𝑐 ∈ {𝑅,𝐺,𝐵}. 𝑘 represents the scattering coefficient
of the atmospheric light, 𝐝 the disparity map between the objects and
camera. 𝑒−𝑘𝐝 is the transmission map indicating the degree of the haze
according to the disparity map, and 𝛼 the global atmospheric light.

To compute the scene radiance 𝑓 𝑐 , the hazy removal method esti-
mates the global atmospheric light and transmission map. In order to
indicate the amount of haze in each pixel, the dark channel prior (DCP)
is used as a priori knowledge of the haze-free image [22]. The DCP is
defined as

𝑔𝐷 = min
𝑐∈(𝑟,𝑔,𝑏)

(

min
𝑦∈𝜔(𝑥)

( 𝑔𝑐𝐻 (𝑦)
𝛼

))

, (2.2)

where 𝑔𝐷 represents the DCP.
The transmission map 𝑒−𝑘𝐝 is computed as

𝑒−𝑘𝐝 = 1 − 𝛽𝑔𝐷, (2.3)

where 𝛽 represents a weighting parameter of the DCP.
Finally, the haze removed image can be computed as

𝑓 𝑐 =
𝑔𝑐𝐻 − 𝛼

𝑒−𝑘𝐝
+ 𝛼. (2.4)

2.2. Total variation based noise reduction

The degradation model of a noisy image is defined as

𝑔 = 𝑓 + 𝜂, (2.5)

where 𝑔 and 𝑓 represent the noisy and ideal noise-free images, respec-
tively. 𝜂 is an additive Gaussian noise with the variance 𝜎 and zero mean.

In order to remove the noise without blurring edges, Rudin et al.
proposed the total variation (TV)-based optimization algorithm [23].
The energy function of the TV method is expressed as

argmin
𝑓

‖𝑔 − 𝑓‖22 + 𝜆 ‖∇𝑓‖1 , (2.6)

where ‖𝑔 − 𝑓‖22 represents a data-fidelity term, ‖∇𝑓‖1 the regulariza-
tion or TV term as a smoothness constraint, and 𝜆 the regularization
parameter that controls the relationship between the data-fidelity and
regularization terms.

The 𝓁2-minimization method such as Tikhonov regularization cannot
avoid the blurring artifact near the edges since it globally minimizes the
gradient of the image [24]. However, the total variation method can
perform edge-preserving noise reduction using the anisotropic property
of the TV constraint term. In addition, the energy function (2.6) of
non-differentiable and convex formula can be solved using various
variational-based optimization methods [20,25,26].
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