Accepted Manuscript

Blur kernel estimation via salient edges and low rank prior for blind image deblurring

Jiangxin Dong, Jinshan Pan, Zhixun Su

PII: S0923-5965(17)30134-0

DOI: http://dx.doi.org/10.1016/j.image.2017.07.004

Reference: IMAGE 15254

To appear in: Signal Processing: Image Communication

Received date: 19 December 2016

Revised date: 14 July 2017 Accepted date: 16 July 2017

Please cite this article as: J. Dong, J. Pan, Z. Su, Blur kernel estimation via salient edges and low rank prior for blind image deblurring, *Signal Processing: Image Communication* (2017), http://dx.doi.org/10.1016/j.image.2017.07.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Blur Kernel Estimation via Salient Edges and Low Rank Prior for Blind Image Deblurring

Jiangxin Dong^a, Jinshan Pan^{b,*}, Zhixun Su^a

 ^aSchool of Mathematical Sciences, Dalian University of Technology, Dalian, China
^bSchool of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China

Abstract

Blind image deblurring, i.e., estimating a blur kernel from a single blurred image, is a severely ill-posed problem. In this paper, we find that the blur process changes the similarity of neighboring image patches. Based on the intriguing observation, we show how to effectively apply the low rank prior to blind image deblurring and present a new algorithm that combines low rank prior and salient edge selection. The low rank prior provides data-authentic prior for the intermediate latent image restoration, while salient edges provide reliable edge information for kernel estimation. When estimating blur kernels, salient edges are extracted from an intermediate latent image solved by combining the predicted edges and the low rank prior, which are able to remove tiny details and preserve sharp edges in the intermediate latent image estimation thus facilitating blur kernel estimation. We analyze the effectiveness of the low rank prior in image deblurring and show that it is able to favor clear images over blurred ones. In addition, we show that the proposed method can be extended to non-uniform image deblurring. Extensive experiments demonstrate that the proposed method performs favorably against state-of-the-art algorithms, both qualitatively and quantitatively.

Keywords: Blind image deblurring, low rank prior, salient edges, kernel

^{*}Corresponding author.

Email addresses: dongjxjx@gmail.com (Jiangxin Dong), sdluran@gmail.com (Jinshan Pan), zxsu@dlut.edu.cn (Zhixun Su)

Download English Version:

https://daneshyari.com/en/article/4970403

Download Persian Version:

https://daneshyari.com/article/4970403

<u>Daneshyari.com</u>