
Contents lists available at ScienceDirect

Signal Processing: Image Communication

journal homepage: www.elsevier.com/locate/image

Block compressive sensing of image and video with nonlocal Lagrangian
multiplier and patch-based sparse representation

Trinh Van Chiena,1, Khanh Quoc Dinha, Byeungwoo Jeona,⁎, Martin Burgerb

a School of Electrical and Computer Engineering, Sungkyunkwan University, Republic of Korea
b Institute for Computational and Applied Mathematics, University of Münster, Germany

A R T I C L E I N F O

Keywords:
Block compressive sensing
Distributed compressive video sensing
Total variation
Nonlocal means filter
Sparsifying transform

A B S T R A C T

Although block compressive sensing (BCS) makes it tractable to sense large-sized images and video, its recovery
performance has yet to be significantly improved because its recovered images or video usually suffer from
blurred edges, loss of details, and high-frequency oscillatory artifacts, especially at a low subrate. This paper
addresses these problems by designing a modified total variation technique that employs multi-block gradient
processing, a denoised Lagrangian multiplier, and patch-based sparse representation. In the case of video, the
proposed recovery method is able to exploit both spatial and temporal similarities. Simulation results confirm
the improved performance of the proposed method for compressive sensing of images and video in terms of both
objective and subjective qualities.

1. Introduction

Current video coding techniques, such as HEVC [1], are designed to
have low-complexity decoders for broadcasting applications; this is
based on the assumption that large amounts of resources are available
at the encoder. However, many emerging real-time encoding applica-
tions, including low-power sensor network applications or surveillance
cameras, call for an opposite system design that can work with very
limited computing and power resources at the encoder. Distributed
video coding (DVC) [2] is an alternate solution for a low-complexity
encoder, in which the encoding complexity is substantially reduced by
shifting the most computationally-intensive module of motion estima-
tion/motion compensation to the decoder. Nonetheless, other than the
encoding process, the processes of image/video acquisition also need to
be considered to further reduce the complexity of the encoder [2]
because current image/video applications capture large amounts of raw
image/video data, most of which are thrown away in the encoding
process for achieving highly compressed bitstream. In this context,
compressive sensing (CS) has drawn interest since it provides a general
signal acquisition framework at a sub-Nyquist sampling rate while still
enabling perfect or near-perfect signal reconstruction [3]. More clearly,
a sparse signal that has most entries equal to zero (or nearly zero) can
be sub-sampled via linear projection onto sensing bases; this can be
reconstructed later by a sophisticated recovery algorithm, which
basically seeks its K-sparse approximation (i.e., the K largest magnitude

coefficients). Consequently, CS leads to simultaneous signal acquisition
and compression to form an extremely simple encoder. Despite its
simplicity, its recovery performance is heavily dependent on the
recovery algorithm, in which some of the important factors are properly
designing the sparsifying transforms and deploying appropriate denois-
ing tools.

Although many CS recovery algorithms have been developed,
including NESTA (Nesterov's algorithm) [4], gradient projection for
sparse reconstruction (GPSR) [5], Bayesian compressive sensing [6–8],
smooth projected Landweber (SPL) [9], and total variation (TV)-based
algorithms [10–12], their reconstructed quality has yet to be improved
much, especially at a low subrate. For better CS recovery, Candes [13]
proposed a weighted scheme based on the magnitude of signals to get
closer to ℓ0 norm, while still using ℓ1 norm in the optimization
problems. In a similar manner, Asif et al. [14] adaptively assigned
weight values according to the homotopy of signals. As another
approach, the authors in [15–17] utilized local smoothing filters, such
as Wiener or Gaussian filters, to reduce blocking artifacts and enhance
the quality of the recovered images. Despite these improvements, the
performances of the aforementioned approaches are still far from
satisfactory because much of the useful prior information of the
image/video signals (e.g., the non-local statistics) was not taken into
full account.

More recent investigations have sought to design a sparsifying
transform to sparsify the image/video signal to the greatest degree
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because the CS recovery performance can be closer to that of sampling
at the full Nyquist rate if the corresponding transform signal is
sufficiently sparse [3]. The direct usage of predetermined transform
bases, such as the discrete wavelet transform (DWT) [7,15], discrete
cosine transform (DCT) [8,15], or gradient transform [10–12,17], is
appealing due to their low complexity. However, predetermined trans-
form bases cannot produce sufficient sparsity (i.e., the number of zero
or close-to-zero coefficients is limited) for the signal of interest, thereby
limiting their recovery performance. Because image and video signals
are rich in nonlocal similarities (i.e., a pixel can be similar to other
pixels that are not located close to it), usage of those nonlocal
similarities [18] can generate a higher sparsity level to achieve better
recovery performance; this is known as a patch-based sparse represen-
tation approach [19]. Note that this approach originally showed much
success in image denoising [19–22] and researchers have incorporated
this idea into CS frameworks. Xu and Yin [23] proposed a fast patch
method for whole-image sensing and recovery under a learned dic-
tionary, while Zhang et al. [24] took advantage of hybrid sparsifying
bases by iteratively applying a gradient transform and a three-dimen-
sional (3D) transform [20]. By using the concept of decomposition, the
authors in [25] also used a 3D transform for cartoon images to enhance
the recovery quality. The 3D transform can be considered a global
sparsifying transform because it is used for all patches of the recovered
images. Dong et al. [26], motivated by the success of data-dependent
transforms for patches (referred to as local sparsifying transforms) such
as principal component analysis (PCA) or singular-value decomposition
(SVD), proposed a method to enhance the sparsity level with the logdet
function to bring ℓ1 norm closer to ℓ0 norm, similar to the work of
Candes [13]. Metzler et al. [27] acquired a local sparsifying transform
via block matching [21] and demonstrated the effectiveness of applying
denoising tools to the CS recovery of the approximate message passing
(AMP) method. However, because of the frame sensing that accesses the
entire image at once, the work described in [23,24,26,27] requires
extensive computation and huge amounts of memory for storing the
sensing matrix [28]; thus, these approaches are not suitable as sensing
schemes for real-time encoding applications or large-scale images/
video.

Alternatively, block compressive sensing (BCS) has been developed
to deal more efficiently with large-sized natural images and video by
sensing each block separately using a block sensing matrix with a much
smaller size. The compressive sensor can instantly generate the mea-
surement data of each block through its linear projection rather than
waiting until the entire image is measured, as is done in frame sensing.
The advantages of BCS are discussed in [9,28–30]. However, in BCS, the
recovery performance has yet to be substantially improved in compar-
ison to that of frame sensing. To address this problem on the sensing
side, a Gaussian regression model between the coordinates of pixels and
their gray levels can be used to achieve better performance compared to
traditional Gaussian matrices [31]. Additionally, Fowler et al. [32]
developed an adaptive subrate method (i.e., multi-scale BCS) to exploit
the different roles of wavelet bands. On the recovery side, for example,
Dinh et al. [33] designed overlapped recovery with a weighted scheme
to reduce the blocking artifacts caused by block recovery. Chen et al.
[34] used the Tikhonov regularization and residual image information
to enhance the smooth projected Landweber [9]. Furthermore, to enrich
the details of recovered images, the K-SVD algorithm [19] was used in
[35]. By sharing the same idea in [23,24,26,27,35] where nonlocal
similarities are exploited to design the local sparsifying transform,
group-based sparse representation (GSR) [36] can achieve better
recovery performance (in terms of the peak signal-to-noise-ratio
(PSNR)) than other algorithms that were previously designed for BCS.
However, its recovered images still contain many visual artifacts since
the nonlocal searching and collecting patches based on the initial
recovered images produced by [34] often have poor quality at low
subrates. Consequently, this implies that more efforts are required for
improving both the objective and subjective quality.

This paper attempts to improve the recovery performance of the
BCS framework by using TV minimization, which is good at preserving
edges [10], with multiple techniques consisting of reducing blocking
artifacts in the gradient domain, denoising the Lagrangian multipliers,
and enhancing the detailed information with patch-based sparse
representation. Furthermore, the proposed recovery methods are easily
extendible to compressive sensing and encoding problems of video [37–
41]. Specifically, our main contributions are summarized as follows.

• For BCS of images, we propose a method, referred to as multi-block
gradient processing, that addresses the blocking artifacts caused by
block-by-block independent TV processing during recovery.
Furthermore, based on our observation that both image information
(e.g., edges and details) and high-frequency artifacts and staircase
artifacts are still prevalent in the Lagrangian multiplier of the TV
optimization, we propose a method to reduce such artifacts by
denoising the Lagrangian multiplier directly with a nonlocal means
(NLM) filter. Because the direct application of the NLM filter is not
effective in preserving local details with low contrast [18], we
further propose enriching these low-contrast details through an
additional refinement process that uses patch-based sparse repre-
sentation. We propose using both global and local sparsifying
transforms because the single usage of either transform limits the
effective sparse basis and achievement of a sufficient sparsity level
for noisy data. The proposed recovery method demonstrates im-
provements for BCS of images compared to previous works
[7,8,15,16,34–36].

• For BCS of videos, we extend the proposed method to a compressive
video sensing problem known as block distributed compressive
video sensing (DCVS). An input video sequence is divided into
groups of pictures (GOP), each of which consists of one key frame
and several non-key frames. These undergo block sensing by a
Gaussian sensing matrix. The proposed method first recovers the key
frame using the proposed recovery method. Then, for non-key
frames, side information is generated by exploiting measurements
of the non-key and previously recovered frames in the same GOP.
Improved quality of the non-key frames is sought by joint mini-
mization of the sparsifying transforms and side information regular-
ization. Our experimental results demonstrate that the proposed
method performs better than existing recovery methods designed for
block DCVS, including BCS-SPL using motion compensation (MC-
BCS-SPL) [38] or BCS-SPL using multi-hypothesis prediction (MH-
BCS-SPL) [39].

The rest of this paper is organized as follows. Section 2 briefly presents
works related to the BCS framework with some discussion. The
proposed recovery method for BCS of images is described in Section
3, and its extension to the block DCVS model is addressed in Section 4.
Section 5 evaluates the effectiveness of the proposed methods compared
to other state-of-the-art recovery methods. Finally, our conclusions are
drawn in Section 6.

2. Block compressive sensing

In the BCS framework, a large-sized image u is first divided into
multiple non-overlapping (small) blocks. Let a vector uk of length n
denote the kth block, which is vectorized by raster scanning. Its m × 1
measurement vector bk is generated through the following linear
projection by a sensing matrix A :B

b A u=k B k (1)

A ratio m n( / ) denotes the subrate (or sub-sampling rate, i.e., the
measurement rate). BCS is memory-efficient as it only needs to store
a small sensing matrix instead of a full one corresponding to the whole
image size. In this sense, block sampling is more suitable for low-
complexity applications.
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