Author's Accepted Manuscript

Robust watermarking scheme for color image based on quaternion-type moment invariants and visual cryptography

Zhuhong Shao, Yuanyuan Shang, Rui Zeng, Huazhong Shu, Gouenou Coatrieux, Jiasong Wu

www.elsevier.com/locate/image

PII: S0923-5965(16)30117-5

DOI: http://dx.doi.org/10.1016/j.image.2016.09.001

Reference: IMAGE15129

To appear in: Signal Processing: Image Communication

Received date: 6 October 2015 Revised date: 1 September 2016 Accepted date: 1 September 2016

Cite this article as: Zhuhong Shao, Yuanyuan Shang, Rui Zeng, Huazhong Shu Gouenou Coatrieux and Jiasong Wu, Robust watermarking scheme for colo image based on quaternion-type moment invariants and visual cryptography *Signal Processing : Image Communication* http://dx.doi.org/10.1016/j.image.2016.09.001

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Robust watermarking scheme for color image based on quaternion-type moment invariants and visual cryptography

Zhuhong Shao^{a,b}, Yuanyuan Shang^{a,b,c}, Rui Zeng^d, Huazhong Shu^{b,e*}, Gouenou Coatrieux^f, Jiasong Wu^e

^aCollege of Information Engineering, Capital Normal University, Beijing 100048, China ^bBeijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048, China

^cBeijing Key Laboratory of Electronic System Reliability Technology, Capital Normal University, Beijing 100048, China

^dQueensland University of Technology, Brisbane, QLD4000, Australia

^eLaboratory of Image Science and Technology, the Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing 210096, China ^fInstitut Mines-TELECOM, TELECOM Bretagne, INSERM 1101 LaTIM, France, Brest 29238, France

*Corresponding author: shu.list@seu.edu.cn

Abstract

This paper introduces a novel robust watermarking scheme for copyright protection of color image based on quaternion-type moment invariants and visual cryptography. As a secure way to allow secret sharing of images, visual cryptography realizes encryption of classified information and the decryption is performed through human visual system. The proposed scheme represents the color image into a quaternion matrix, so that it can deal with the multichannel information in a holistic way. Then the quaternion moments are applied to extract the invariant features, which are crucial to generate the master share. Together with the scrambled watermark, they are used for constructing the ownership share based on visual cryptography. Afterwards, the ownership share is registered and responsible for authentication. A set of experiments has been conducted to illustrate the validity and feasibility of the proposed scheme as well as better robustness against different attacks.

Keywords: Color image, copyright protection, watermarking, quaternion moment invariants, visual cryptography

1. Introduction

With the convenient accessibility of digital multimedia products, enormous amount of digital images are daily generated and propagated over different kinds of communication channels. Under such scenario, the authentication of multimedia data becomes an important concern.

As a promising mechanism, digital watermarking has being one of research topics since its concept was put forward [1] and gained prosperous development in the past two decades [2-8]. For example, Wu and Sun [2] designed a discrete cosine transform (DCT) and singular value decomposition (SVD) based copyright protection scheme. Gao and Jiang [3] used the magnitudes of the Bessel-Fourier moments as feature descriptors to construct a zero-watermark scheme. However, their schemes require a normalization procedure to resist geometric distortions. Khan et al. [4] provided a comprehensive survey on reversible watermarking algorithms reported lately. Nyeem et al. [5] constructed a formal generic watermarking model and discussed a set of watermarking properties as well as possible attacks. Since the quaternion representation can deal with a color image in a holistic way,

Download English Version:

https://daneshyari.com/en/article/4970536

Download Persian Version:

https://daneshyari.com/article/4970536

Daneshyari.com