Author's Accepted Manuscript

Direction-Adaptive Fixed Length Discrete Cosine Transform Framework for Efficient H.264/AVC Video Coding

Deepak Singh, Sukadev Meher

www.elsevier.com/locate/image

PII: S0923-5965(16)30118-7

DOI: http://dx.doi.org/10.1016/j.image.2016.09.002

Reference: IMAGE15130

To appear in: Signal Processing: Image Communication

Received date: 10 October 2015 Revised date: 2 September 2016 Accepted date: 4 September 2016

Cite this article as: Deepak Singh and Sukadev Meher, Direction-Adaptive Fixed Length Discrete Cosine Transform Framework for Efficient H.264/AVC Video C o d i n g , *Signal Processing : Image Communication* http://dx.doi.org/10.1016/j.image.2016.09.002

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Direction-Adaptive Fixed Length Discrete Cosine Transform Framework for Efficient H.264/AVC Video Coding

Deepak Singh^{a,*}, Sukadev Meher^a

^aDepartment of Electronics and Communication Engineering National Institute of Technology Rourkela Odisha, 769008, India

Abstract

The 2D-discrete cosine transform (2D-DCT) is one of the popular transformation for video coding. Yet, 2D-DCT may not be able to efficiently represent video data with fewer coefficients for oblique featured blocks. To further improve the compression gain for such oblique featured video data, this paper presents a directional transform framework based on direction-adaptive fixed length discrete cosine transform (DAFL-DCT) for intra-, and inter-frame. The proposed framework selects the best suitable transform mode from eight proposed directional transform modes for each block, and modified zigzag scanning pattern rearranges these transformed coefficients into a 1D-array, suitable for entropy encoding. The proposed scheme is analysed on JM 18.6 of H.264/AVC platform. Performance comparisons have been made with respect to rate-distortion (RD), Bjontegaard metrics, encoding time etc. The proposed transform scheme outperforms the conventional 2D-DCT and other state-of-art techniques in terms of compression gain and subjective quality.

Keywords: Discrete cosine transform, Direction adaptive transform, Directional transform framework, Video coding, Video compression

Email address: deepak.ameen2k@gmail.com (Deepak Singh)

^{*}Corresponding author.

¹deepak.ameen2k@gmail.com

²smeher@nitrkl.ac.in

Download English Version:

https://daneshyari.com/en/article/4970537

Download Persian Version:

https://daneshyari.com/article/4970537

<u>Daneshyari.com</u>