
Contents lists available at ScienceDirect

INTEGRATION, the VLSI journal

journal homepage: www.elsevier.com/locate/vlsi

Shaping data for application performance and energy optimization in
dynamic data view framework

Varun Venkatesana, Swamy D. Ponpandib,⁎, Akhilesh Tyagib

a Intel Corporation, Bellevue, Washington
b Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 USA

A R T I C L E I N F O

Keywords:
Dynamic binary optimization
Data shapers
Spatial locality
Performance optimization
Time and energy

A B S T R A C T

Memory access bottlenecks are often due to the result of mismatch between the processor hardware's view of
data and the algorithmic/logical view of data. This variation in data views is especially more pronounced in
applications involving large datasets, leading to significantly increased latency and user response times.
Previous attempts to tackle this problem were primarily targeted at execution time optimization. We present a
dynamic technique piggybacked on the classical dynamic binary optimization (DBO) to shape the data view for
each program phase differently resulting in program execution time reduction along with reductions in access
energy. Our implementation rearranges non-adjacent data into a contiguous dataview. It uses wrappers to
replace irregular data access patterns with spatially local dataview. DDV (Dynamic data view), a runtime
dynamic binary translation and optimization framework has been used to perform runtime instrumentation and
dynamic data optimization to achieve this goal. This scheme not only ensures a reduced program execution
time, but also results in lower cache access energy. Some of the commonly used benchmarks from the SPEC
2006 and SPLASH-2 suite were profiled to determine irregular data accesses from procedures which
contributed heavily to the overall execution time. Wrappers built to replace these accesses with spatially
adjacent data led to a significant improvement in the total execution time. On average, 20% reduction in time
was achieved along with a 5% reduction in energy for SPEC 2006 and 11% reduction in time was achieved along
with a 6% reduction in energy for SPLASH-2.

1. Introduction

Application data access pattern influences design parameters of
micro-architecture such as cache size, number of levels in cache
hierarchy, data path. Data access pattern can vary widely depending
on how data is manipulated and hence, depends on nature of the
application. Non-spatial data access has been a leading contributor to
memory access latency in most applications, resulting in increased
program execution times and diminished response times. Potential
performance (latency) issues of memory hierarchy can often be traced
back to linear view of address space. Hardware implementation tends
to be much simpler for a linear layout of address space. It is for this
reason that most commercial processors have a spatially linear view of
data. Applications, on the other hand, extensively use optimal algo-
rithms, tailor-made for program efficiency. This results in a spatially
non-adjacent view (logical view) of data manipulated by the applica-
tion. This mismatch between the processor's view of data and the
algorithm's view of data results in several performance bottlenecks
such as increased memory access latency, increased program execution

times, lower effective memory bandwidth and increased power con-
sumption for data accessed from memory hierarchy. This performance
degradation is more pronounced in emerging big data applications, due
to a magnified mismatch resulting from the highly non-spatial algo-
rithmic data views.

The primary contribution of this work is the development of an
effective approach to reduce the data access time in applications that
have a logical view of data which markedly deviates from a linear data
view. The negative performance impact of non-spatial data access has
been curtailed by creating a Dynamic Data View to replace the
irregular data access patterns at runtime. Dynamic Data View collates
irregular data access pattern to provide a linear data view for the
processor micro-architecture. Hence, spatially adjacent data presented
by Dynamic Data View at run time improves the performance of
applications by reducing memory access bottlenecks. The storage
structures which support Dynamic Data View are evaluated in this
work for potential improvement in performance and cache access
energy. This study evaluates the performance of three data stores that
host the dynamically shaped data – the Dynamic Data View Array

http://dx.doi.org/10.1016/j.vlsi.2016.12.001

⁎ Corresponding author.
E-mail addresses: varunkumhar@gmail.com (V. Venkatesan), swamy@iastate.edu (S.D. Ponpandi), tyagi@iastate.edu (A. Tyagi).

INTEGRATION the VLSI journal (xxxx) xxxx–xxxx

0167-9260/ © 2016 Elsevier B.V. All rights reserved.

Please cite this article as: Venkatesan, V., INTEGRATION the VLSI journal (2016), http://dx.doi.org/10.1016/j.vlsi.2016.12.001

http://www.sciencedirect.com/science/journal/01679260
http://www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2016.12.001
http://dx.doi.org/10.1016/j.vlsi.2016.12.001
http://dx.doi.org/10.1016/j.vlsi.2016.12.001

(DDVA), Tagless D-Cache and Scratchpad Memory. The applicability
of this scheme to various applications in the SPEC2006 and SPLASH-2
benchmark suite [1,2] is studied.

Traditional cache solutions fetch blocks of data (cache line) hoping
for spatial locality in the immediate vicinity of current miss address.
Prefetch based techniques also initiate cache line fills to reduce the
probability of a miss by attempting to align the data access window
with the prefetch widow. However, the key idea is still spatial locality
around the vicinity of the current miss address. Violation of this
assumption renders the surrounding data near the miss address useless
and results in poor performance/energy for applications with data
access patterns that result in such violation. Hence, traditional cache
solutions do not address this problem.

DDV is a run time solution to address the diminished utilization of
space in cache from the perspective of spatial locality. Run time data
access monitoring code (referred to as wrappers in this paper) can be
inserted into code regions for shaping data access. There are no
restrictions on the data structure which is used to shape data, provided,
spatial locality is satisfied. Dynamic data view Array structure mimics a
cache line to shape data access, which is the example used in our work.
Data shaped and collected in DDVA structure is the actual access
pattern of an application which is guaranteed to have spatial locality for
a given epoch. Once the data has been shaped for spatial locality within
DDVA, all future accesses to data are redirected to the DDVA structure
instead of the actual address locations in the original code. The cached
version of the DDVA structure now has complete spatial locality. Note
that the reshaped data set in DDVA should also have temporal locality
through repeated use in order to amortize the cost of shaping over the
future accesses. This technique can be seamlessly added to dynamic
translation based execution frameworks such as Java virtual machine,
hdtrans (x86 dynamic execution framework, used in our work) etc.

2. Related work

The processor memory gap has been increasing at an ever faster
rate over the past decade. This gap has further widened due to the
inability of architectural and software paradigms to achieve maximum
possible memory bandwidth. Previous work to reduce this performance
gap has focused on architectural modifications and software techniques
to improve application performance by reducing memory bottlenecks.
Our proposed approach seeks to reduce both execution time and energy
by dynamically collating runtime data into spatially adjacent data.

Prior works have mainly focused on overlapping data access with
computation to hide memory access latency due to non-spatial access
pattern. Prefetching instructions and data is one of the most researched
techniques to hide memory latency [3]. Simplified versions are
commonly implemented in compilers and micro-architecture.
Prefetch instructions can be inserted in application code through
compiler based static analysis. Such instructions trigger prefetch of
data before actual consumption of data. Software-based cache designs
also have been proposed for identifying and storing frequently reused
instructions. Similar techniques can also be used for managing spatial
and temporal locality by caching data before consumption. Micro-
architecture based prefetch uses history based windows to trigger data
or instruction prefetch. Prefetching can be fine tuned to optimize
pointer-based recursive applications by targeting specific data struc-
tures and array references. Code transformations, iteration reordering-
transformations to mask memory latency and some interleaving
schemes to reduce DRAM row-buffer conflicts were also targeted in
other related work. Even though several such approaches have been
moderately successful in reducing and hiding memory access latency
and thus, execution time, they have fallen short in addressing the
energy use of these applications with non-spatial data access.

Non-blocking caches and prefetching caches [4] are two techniques
for hiding memory latency by exploiting the overlap of processor
computations with data accesses. A non-blocking cache allows execu-

tion to proceed concurrently with cache misses as long as dependency
constraints are observed, thus exploiting post-miss operations. A
prefetching cache generates prefetch requests to bring data in the
cache before it is actually needed, thus allowing overlap with pre-miss
computations. There are also some hybrid approaches that combine the
benefits of both these schemes.

A software driven cache design, called the Array Cache [5] was also
proposed. It uses a separate cache space to store and handle array
references with constant strides that are prefetched accurately with the
help of the compiler with extremely low runtime overhead. This design
was primarily targeted towards scientific computation applications,
where most of the data references are array references with constant
strides.

Another work, as described in [6] proposes code transformations to
increase parallelism in the memory system by overlapping multiple
read misses within the same instruction window, while preserving
cache locality. This approach claims to deliver execution time reduc-
tions averaging 20% in a multiprocessor and 30% in a uniprocessor due
to significant increases in memory parallelism. A runtime approach to
improve computation and data locality in irregular programs based on
the inspector-executor method used by Saltz has been proposed in [7].
This work improves computation and data locality, and also eliminates
most of the runtime overhead. A compile-time framework that allows
run-time data and iteration reordering transformations has been
proposed in [8] to enhance locality in applications with sparse data
structures.

A software controlled prefetching scheme targeted towards pointer-
based applications with recursive data structures has been proposed in
[9]. This method claims to help achieve a 45% improvement in
execution time. A HotSpot instruction cache has been proposed in
[10] that identifies frequently accessed instructions dynamically and
stores them in the smaller L0 cache. This approach helps achieve a 52%
reduction in instruction cache energy without performance degrada-
tion.

The authors of [11] propose a prefetching scheme which uses
history based information on cache misses to predict cache miss in new
pages. This scheme targets irregular data access pattern. They use
multiple prediction tables of variable length history information to
predict cache misses. More history generally results in better predic-
tion. This technique is targeted primarily at performance of applica-
tions and requires changes to hardware architecture. Similarly, the
work in [12] uses a stream buffer hardware structure to map irregular
data accesses to linear addresses in the stream buffer. They use several
hardware structures for training the prefetch engine for future predic-
tion of access patterns. Both works [11,12] report performance
improvement for SPEC 2006 benchmarks.

Tagless cache designs are targeted at reducing access energy of L1
cache. The authors of [13,14] propose to eliminate tag comparisons for
instruction and data cache by modifying TLB structure. TLB contains
extra information about cache ways with valid cache lines that are
tagless through exclusive mapping of a page or address space to a way.
Such modifications augment new hardware structures to support this
tagless access design. Such cache design reduces energy consumption
on hit and miss due to the fact that tag comparisons are eliminated.
TLB contains the cache way information thus eliminating the need to
fetch all ways during test for a hit. The authors of [13,14] report 60%
average dynamic energy savings using TLB modifications.

Our methodology differs from prefetching based techniques in the
following way. Prefetching populates the cache with unnecessary data
for large structures in which only few fields are accessed repeatedly.
This is expensive in both performance and energy. Bandwidth between
the main memory and cache has become a very critical resource for
multi-core computing architectures. The DDVA structure, which is
cached during execution of application, reduces the strain on memory
bandwidth by only tracking data structure fields which are used.
Prefetching can be used in conjunction with DDVA to trigger fetches

V. Venkatesan et al. INTEGRATION the VLSI journal (xxxx) xxxx–xxxx

2

Download	English	Version:

https://daneshyari.com/en/article/4970628

Download	Persian	Version:

https://daneshyari.com/article/4970628

Daneshyari.com

https://daneshyari.com/en/article/4970628
https://daneshyari.com/article/4970628
https://daneshyari.com/

