
Contents lists available at ScienceDirect

INTEGRATION, the VLSI journal

journal homepage: www.elsevier.com/locate/vlsi

Low space complexity CRT-based bit-parallel GF (2)n polynomial basis
multipliers for irreducible trinomials

Jiajun Zhanga,⁎, Haining Fanb

a School of Software and TNLIST, Tsinghua University, Beijing, China
b Department of Computer Science and Technology and TNLIST, Tsinghua University, Beijing, China

A R T I C L E I N F O

Keywords:
Finite field
Multiplication
Polynomial basis
The Chinese Remainder Theorem
Irreducible polynomial

A B S T R A C T

This paper presents new space complexity records for the fastest parallel GF (2)n multipliers for about 22%
values of n such that a degree-n irreducible trinomial f u u= + + 1n k exists over GF (2). By selecting the largest
possible value of k n n∈ (/2, 2 /3], we further reduce the space complexities of the Chinese remainder theorem
(CRT)-based hybrid polynomial basis multipliers. Our experimental results show that among the 539 values of
n ∈ [5, 999] such that f is irreducible for some k n∈ [2, − 2], there are 317 values of n such that k n n∈ (/2, 2 /3].
For these irreducible trinomials, the space complexities of the CRT-based hybrid multipliers are reduced by
14.3% on average. As a comparison, the previous CRT-based multipliers considered the case k n∈ [2, /2], and
the improvement rate is 8.4% on average for only 290 values of n among these 539 values of n.

1. Introduction

Low complexity multipliers are key modules of GF (2)n -based
cryptographic chips. Their theoretical space and time complexities,
namely, the total number of 2-input AND/XOR gates (the GF (2)
multiplication/addition) and their corresponding gate delays (denoted
by “TA” and “TX”), depend on various factors, for example, the method
to represent field elements: polynomial, normal and dual bases; the
underlying multiplication algorithms: quadratic and subquadratic
algorithms etc. Pure quadratic and subquadratic multipliers are of
great theoretical importance. They have the lowest time and space
complexities respectively, but their disadvantages are also obvious: the
largest space and time complexities respectively. On the other hand,
hybrid approaches in [1–3] provide a trade-off between the time and
space complexities. These multipliers first perform a few subquadratic
iterations to reduce the whole space complexities, and then one
quadratic step on small input operands to achieve lower time complex-
ity. Therefore, this hybrid approach is often adopted in practical
applications.

Recently, two different hybrid multipliers are presented in [4,5].
The former uses the matrix representation, and adopts the “1-quad-
ratic-and-then-subquadratic” computational mode. This method re-
duces the total space complexity for current ASIC implementations.
The latter uses the polynomial representation, and follows the “1-
subquadratic-and-then-quadratic” computational mode first proposed
in [6]. Thanks to the property of the ceiling function “⌈·⌉”, the time

complexity of this multiplier matches the fastest bit-parallel multiplier
– the pure quadratic multiplier – when u u+ + 1n k is irreducible for
some k n n∈ [(− 1)/3, /2]. Its highlight is the AND and XOR space
complexities: the following bounds of the fastest bit-parallel multipliers
were broken for the first time:

⎧⎨⎩
n
n

#AND gates:
#XOR gates: − 1.

2

2

In this work, we report a further reduction of the space complexities
obtained in [5] for some irreducible trinomials u u+ + 1n k where
k n n∈ (/2, 2 /3], and therefore present new space complexity records
for these irreducible trinomials. Before explaining our motivation, we
recall the multipliers in [5] first.

Let f u u u() = + + 1n k (n > 2) be an irreducible trinomial of degree
n over GF (2). All elements of the finite field GF GF u f u(2)≔ (2)[]/(())n

can be represented using a polynomial basis x i n{ |0 ≤ ≤ − 1}i , where x
is a root of f. Given two field elements a x a x() = ∑i

n
i

i
=0
−1 and

b x b x() = ∑i
n

i
i

=0
−1 , where a b GF, ∈ (2)i i , the classical polynomial basis

multiplication algorithm computes the GF (2)n product c x c x() = ∑i
n

i
i

=0
−1

of a(x) and b(x) using the following two steps. For the sake of
simplicity, we omit “ x()” in polynomial “a(x)” and denote a(x) by a.

(i) Conventional polynomial multiplication:

∑s a b s x= · = ,
t

n

t
t

=0

2 −2

(1)

http://dx.doi.org/10.1016/j.vlsi.2017.02.008
Received 26 June 2016; Received in revised form 23 January 2017; Accepted 20 February 2017

⁎ Corresponding author.
E-mail addresses: zjjzhaoyun@126.com (J. Zhang), fhn@tsinghua.edu.cn (H. Fan).

INTEGRATION the VLSI journal 58 (2017) 55–63

Available online 21 February 2017
0167-9260/ © 2017 Elsevier B.V. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/01679260
http://www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2017.02.008
http://dx.doi.org/10.1016/j.vlsi.2017.02.008
http://dx.doi.org/10.1016/j.vlsi.2017.02.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2017.02.008&domain=pdf

where

⎪
⎪⎧⎨
⎩

∑s a b
a b t n

a b n t n
= =

∑ , 0 ≤ ≤ − 1,

∑ , ≤ ≤ 2 − 2.
t

i j t
i j n

i j
i
t

i t i

i t n
n

i t i+ =
0≤ , <

=0 −

= +1−
−1

−
(2)

(ii) Reduction f x xmod = + + 1n k :

∑c c x s f= = mod .
i

n
i

i
=0

−1
(3)

The product c obtained in the second step is the remainder of s
divided by f, i.e.,

s f q c= · + . (4)

In order to apply the Chinese remainder theorem in the second
step, multipliers in [5] adopt the following identity:

s f q c f q c q= · + = (+ 1) + (+). (5)

We note that addition is the same with subtraction in fields of
characteristic 2.

This identity converts the seemingly unbreakable step (ii) “modulo
the degree-n irreducible trinomial f” into the following two problems:

(A) Compute the quotient q of s divided by f + 1;
(B) Compute the remainder c q(+) of s divided by f + 1.

Then the product c of elements a and b can be constructed by
c q c q= + (+).

Because the degree-n polynomial f x x+ 1 = +n k is clearly reduci-
ble, the CRT can be used to divide problem (B), i.e., a b x x· mod(+)n k ,
into the following two smaller subproblems [5]:

(1) a b x· mod k;
(2) a b x· mod(+ 1)n k− .

Therefore the product c of elements a and b is now divided into
three problems: (A), (B.1) and (B.2). In order to understand the
advantage of this method, we make a rough estimate of the AND (or
XOR) gate complexities of these three problems. We consider only the
quadratic part and ignore the linear part. From the analysis in [5],
these three complexities are C n= /2A

2 , C k= /21
2 and C n k= (−)2

2

respectively. The summation of C C C+ +A 1 2 is a function of k. Fig. 1
depicts the decreasing trend of this summation while the value of k
increases. For the case k n= /3, this summation is n2, which is
approximately equal to the AND (or XOR) gate complexity of the
fastest quadratic multiplier. In fact, multipliers in [5] are not better
than the best quadratic multipliers for the case k n0 < ≤ /3. However,
for the case k n= /2, this summation is only n7 /82 , which is the best case
discussed in [5].

Now we explain our motivation. The CRT divides the size-n
problem (B) into two smaller subproblems (B.1) and (B.2) of sizes k
and n k− respectively. According to the balancing principle of the
algorithm design, it is better to select k, if possible, such that the
difference between sizes of the two subproblems (B.1) and (B.2), i.e.,
k n k k n| − (−)| = |2 − |, is as small as possible. Multipliers in [5] just
follow this principle, and select the largest possible k in the range of

n[1, /2] as the best candidate.

In fact, this choice of the value of k, i.e., the largest possible k in the
range of n[1, /2], is also the best candidate in some other quadratic
multipliers. For example, the shifted polynomial basis multipliers in [7]
and the polynomial basis Montgomery multipliers in [8].

As for the CRT-based multiplier, a more careful observation shows
that the function

C C C n k n k+ + = /2 + /2 + (−) ,A 1 2
2 2 2 (6)

namely, the approximate AND (or XOR) gate complexity, reaches its
minimal value when k n= 2 /3, i.e., Fig. 1 (c). Therefore, we consider the
case n k n/2 < ≤ 2 /3 in this work. Our experimental results show that
among the 539 values of n such that n4 < < 1000 and u u+ + 1n k is
irreducible over GF (2) for some k > 1, the proposed multipliers beat
those in [5] for 117 values of n: they have the same time complexity,
but the space complexities are reduced.

2. Two types of the CRT-based multipliers

The two types of multipliers presented in this work, i.e., the Type-A
and Type-B multipliers, follow the same design approach as those in
[5]: compute each coefficient ci using a binary XOR tree. The difference
of these two types of multipliers is that they adopt different computa-
tional procedures to organize the reusable terms, and therefore,
provide a space-time trade-off. Type-A multipliers achieve the minimal
number of the XOR gates, but their time complexities are not optimal
for some irreducible trinomials. Type-B multipliers overcome this
disadvantage at the cost of some more XOR gates, which are saved in
the reusable terms of the Type-A multipliers. They try to construct a
binary XOR tree with the smallest height. For example, u u+ + 168 33 is
irreducible on GF (2) [5]. The coefficients c0 and c35 share a common
subexpression of 33 product terms. While the Type-A multiplier
computes this common subexpression using a single binary XOR
subtree of height 6, the Type-B multiplier splits this 33-term common
subexpression into two parts: a binary XOR subtree of height 5 which
computes the summation of the first 32 product terms and a binary
XOR tree of height 0 which consists of the only 33rd product term. The
subtree of height 5 is then shared in the coefficients c0 and c35, and the
33rd product term is combined with other terms in c0 and c35 at the
cost of 2 extra XOR gates. However, the total XOR gate delays of this
method is less than that of the Type-A multiplier by T1 X . For a detailed
description of these two types of multipliers, please refer to [5]. The
following Fig. 2 illustrates the architecture of these multipliers.

Because the expression of each coefficient ci is a bit complex, we
derive the explicit formulae of c=ab for the case n k n/2 < ≤ 2 /3 in
Appendix. To understand the key idea of the proposed multipliers
easily, the reader may jump to the example given in Section 4 first. In
the following, we analyze the complexities of the Type-A and Type-B
multipliers.

Fig. 1. Approximate AND (or XOR) gate Complexity. Fig. 2. The architecture of the multiplier.

J. Zhang, H. Fan INTEGRATION the VLSI journal 58 (2017) 55–63

56

Download English Version:

https://daneshyari.com/en/article/4970661

Download Persian Version:

https://daneshyari.com/article/4970661

Daneshyari.com

https://daneshyari.com/en/article/4970661
https://daneshyari.com/article/4970661
https://daneshyari.com

